
Migration Overview

Why Migrate

• Financial
• Forced by vendor

• Technical Flexibility

Migration Phases

• Analyzing
• Schema Migration
• Application Migration
• Testing
• Data Migration
• Production Cut Over

Migration Breakdown

Migrations

• The migration project is really migrating an
application, not a database

• A single migration project may actually migrate 5
or more databases

• Development
• QA
• Staging
• Production
• Disaster Recovery

Common Migration Mistakes

Why?

• Project deadline
• Looming Oracle renewal

• Lack of education

• Attitude
• Only see the world through an Oracle lens

• Using migration tools or other short cuts

System Tuning

• When moving to PostgreSQL, many admins start
with configuring values similar to the Oracle
settings

• “My SGA was set to 16GB so shared_buffers is
16GB”

• “My redo logs are 2GB so max_wal_size is 2GB”

System Tuning

• In Oracle, it is possible to get better performance
with a 32k block size

configure –with-blocksize=32

make

make install

Uppercase Folding

• In Oracle, all meta-data folds to uppercase

SQL> DESC USERS

Name Null? Type

---------- ------- ------------------------

FNAME VARCHAR2(100)

MNAME VARCHAR2(100)

LNAME VARCHAR2(100)

Uppercase Folding

• In PostgreSQL, all meta-data folds to lowercase

test=# \d users

Table ”public.users”

Column | Type | Nullable

--------+------------------------+---------

fname | character varying(100) |

mname | character varying(100) |

lname | character varying(100) |

Uppercase Folding

• Many migration tools carry the uppercase from
Oracle over to PostgreSQL

test=# \d ”USERS”

Table ”public.USERS”

Column | Type | Nullable

--------+------------------------+----------

FNAME | character varying(100) |

MNAME | character varying(100) |

LNAME | character varying(100) |

Uppercase Folding

• Becomes very tedious needing to double quote
everything

test=# SELECT ”FNAME”, ”MNAME”, ”LNAME” FROM ”USERS”;

FNAME | MNAME | LNAME

---------+--------+------------

George | | Washington

John | | Adams

Thomas | | Jefferson

James | | Madison

James | | Monroe

Andrew | | Jackson

Martin | | Van Buren

John | | Tyler

John | Quincy | Adams

William | Henry | Harrison

(10 rows)

Table Spaces

• In Oracle, table spaces are critical for storing
data

• Generally many table spaces are used for
indexes and tables

CREATE TABLESPACE ts_data1

LOGGING

DATAFILE ’/data/ts_data1.dbf’

SIZE 32m

AUTOEXTEND ON

NEXT 32m MAXSIZE 2048m

EXTENT MANAGEMENT local;

Table Spaces

• In PostgreSQL, table spaces are just directory
locations

• Provide no real benefit unless the database
spans multiple mount points

CREATE TABLESPACE ts_data1

LOCATION ’/data/ts_data1’;

Table Spaces

• Additional table spaces makes operations more
cumbersome like

• Backup and restore
• Replication setup
• Major version upgrades

Dual Table

SQL> SELECT SYSDATE FROM DUAL;

SYSDATE

09-MAY-17

Dual Table

• In PostgreSQL, the FROM clause is optional and
is unnecessary

• Don’t mock a DUAL table

test=# SELECT CURRENT_DATE;

current_date

2017-05-09

(1 row)

Exceptions

• Many Oracle procedures use exceptions as part
of standard practice

• Application developers are comfortable catching
exceptions

• Some applications have exception handling in
every procedure and function

• Most migration tools simply translate the code to
pl/pgsql

Exceptions

CREATE FUNCTION get_first_name(p_lname varchar2)

RETURN varchar2

IS

l_fname varchar2(100);

BEGIN

SELECT fname

INTO l_fname

FROM users

WHERE lname = p_lname;

RETURN l_fname;

EXCEPTION

WHEN no_data_found THEN

l_fname := null;

RETURN l_fname;

END get_first_name;

Exceptions
CREATE FUNCTION get_first_name(p_lname varchar)

RETURNS varchar

AS $$

DECLARE
l_fname varchar;

BEGIN

SELECT fname

INTO l_fname

FROM users

WHERE lname = p_lname;

RETURN l_fname;

EXCEPTION

WHEN no_data_found THEN

l_fname := null;

RETURN l_fname;

END

$$ LANGUAGE plpgsql;

Exceptions

• PostgreSQL uses sub transactions to handle
exceptions

CREATE OR REPLACE FUNCTION get_first_name(p_lname varchar)

RETURNS varchar

AS $$

DECLARE

l_fname varchar := null;

BEGIN

SELECT fname

INTO l_fname

FROM users

WHERE lname = p_lname;

RETURN l_fname;

END

$$ LANGUAGE plpgsql;

Fine Tuning Queries

“I added a hint to use an index but PostgreSQL does
not use it”

• PostgreSQL does not have hints as part of the
core database

• It treats Oracle hints as comments

• PostgreSQL’s optimizer is different than Oracle
so queries are tuned differently

Fine Tuning Queries

“I didn’t index my column in Oracle, why would I in
PostgreSQL?”

• PostgreSQL has more and different types of
indexes than Oracle

• B-tree
• Hash
• GIN
• GiST
• SP-GiST
• BRIN

Fine Tuning Queries

• PostgreSQL can even use indexes on LIKE
queries

CREATE INDEX idx_users_lname

ON users USING gin (lname gin_trgm_ops);

EXPLAIN SELECT * FROM users WHERE lname LIKE ’%ing%’;

QUERY PLAN

Bitmap Heap Scan on users (cost=8.00..12.02 rows=1 width=654)

Recheck Cond: ((lname)::text ~~ ’%ing%’::text)

-> Bitmap Index Scan on idx_users_lname

(cost=0.00..8.00 rows=1 width=0)

Index Cond: ((lname)::text ~~ ’%ing%’::text)

Not Using Native Features

• PostgreSQL is more feature rich for developers
than Oracle

• Stored Procedure Languages
• Foreign Data Wrappers
• Data Types
• Spatial

Not Using Native Features

CREATE OR REPLACE FUNCTION has_valid_keys(doc json)

RETURNS boolean AS

$$

if (!doc.hasOwnProperty(’fname’))

return false;

if (!doc.hasOwnProperty(’lname’))

return false;

return true;

$$ LANGUAGE plv8 IMMUTABLE;

ALTER TABLE user_collection

ADD CONSTRAINT collection_key_chk

CHECK (has_valid_keys(doc::json));

Not Using Native Features

CREATE TABLE login_history (

user_id bigint,

host inet,

login_ts timestamptz

);

SELECT user_id, count(*)

FROM login_history

WHERE host << ’17.0.0.0/8’::inet

AND login_ts > now() - ’7 days’::interval

GROUP BY 1;

Synonyms

“PostgreSQL doesn’t have synonyms so I can’t mi-
grate my application”

CREATE PUBLIC SYNONYM emp

FOR SCOTT.emp;

• Synonyms are used to not fully qualify cross
schema objects

• Mostly a convenience feature

Synonyms

• In PostgreSQL, search_path can accomplish
many of the same things and is less tedious to
setup

test=# show search_path;

search_path

”$user”, public

(1 row)

Synonyms
CREATE FUNCTION user1.get_int()

RETURNS int AS

$$

SELECT 1;

$$ LANGUAGE sql;

CREATE FUNCTION user2.get_int()

RETURNS int AS

$$

SELECT 2;

$$ LANGUAGE sql;

CREATE FUNCTION public.get_number()

RETURNS float8 AS

$$

SELECT 3.14::float8;

$$ LANGUAGE sql;

Synonyms

test=# SELECT get_int();

2017-05-08 17:38 EDT [28855] ERROR: function get_int() does not ...

2017-05-08 17:38 EDT [28855] HINT: No function matches the given...

2017-05-08 17:38 EDT [28855] STATEMENT: SELECT get_int();

ERROR: function get_int() does not exist

LINE 1: SELECT get_int();

^

HINT: No function matches the given name and argument types. You...

Synonyms

test=# SET search_path = user1, user2, public;

SET

test=# SELECT get_int();

get_int

1

(1 row)

Synonyms

test=# SET search_path = user2, user1, public;

SET

test=# SELECT get_int();

get_int

2

(1 row)

Synonyms

test=# select get_number();

get_number

3.14

(1 row)

Nulls

• PostgreSQL and Oracle handle nulls a bit
differently

• Need to account for them appropriately
• Most often seen with string concatenation

Nulls

CREATE TABLE users (

fname VARCHAR2(100),

mname VARCHAR2(100),

lname VARCHAR2(100)

);

SELECT

fname || ’ ’ || mname || ’ ’ || lname

FROM users;

Nulls

SQL> SELECT fname || ’ ’ || mname || ’ ’ || lname FROM users;

FNAME||’’||MNAME||’’||LNAME

George Washington

John Adams

Thomas Jefferson

James Madison

James Monroe

Andrew Jackson

Martin Van Buren

John Tyler

John Quincy Adams

William Henry Harrison

10 rows selected.

Nulls

test=# SELECT fname || ’ ’ || mname || ’ ’ || lname FROM users;

?column?

John Quincy Adams

William Henry Harrison

(10 rows)

Nulls

test=# SELECT COALESCE(fname, ’’) || ’ ’ ||

COALESCE(mname, ’’) || ’ ’ ||

COALESCE(lname, ’’) FROM users;

?column?

George Washington

John Adams

Thomas Jefferson

James Madison

James Monroe

Andrew Jackson

Martin Van Buren

John Tyler

John Quincy Adams

William Henry Harrison

(10 rows)

Data Types

• Oracle has a few main data types that are
typically used

• VARCHAR2
• DATE
• NUMBER

• And a couple Large Object types
• CLOB
• BLOB

Data Types
• PostgreSQL comes with 64 base types and can
be extended for more

abstime

aclitem

bit

bool

box

bpchar

bytea

char

cid

cidr

circle

date

float4

float8

gtsvector

inet

int2

int2vector

int4

int8

interval

json

jsonb

line

lseg

macaddr

money

name

numeric

oid

oidvector

path

pg_lsn

pg_node_tree

point

polygon

refcursor

regclass

regconfig

regdictionary

regnamespace

regoper

regoperator

regproc

regprocedure

regrole

regtype

reltime

smgr

text

tid

time

timestamp

timestamptz

timetz

tinterval

tsquery

tsvector

txid_snapshot

uuid

varbit

varchar

xid

xml

Data Types

• Don’t assume that the perceived equivalent in
PostgreSQL behaves the same as Oracle

• For example, managing CLOBS
• Length
• Substrings

DBMS_LOB.GETLENGTH(x)

Data Types

• In PostgreSQL, VARCHAR and TEXT are
equivalent and behave the same

CREATE TABLE max_varchar (

a varchar(4001)

);

CREATE TABLE max_varchar (

a varchar(10485760)

);

Data Types

test=# INSERT INTO max_varchar SELECT repeat(’x’, 1073741800);

INSERT 0 1

test=# SELECT length(a) from max_varchar ;

length

1073741800

(1 row)

Data Types

Data Types

• Most migration tools translate an Oracle
NUMBER to a PostgreSQL NUMERIC

• A PostgreSQL NUMERIC can hold
• 131072 before the decimal point
• 16383 after the decimal point

• It is not the same are NUMBER

SELECT to_number(n, n)

FROM repeat(’9’, 131071) n;

Analyzing

Determining Candidates

• Look at the entire portfolios of applications
• Split the portfolio into 2 high level buckets

• 3rd party applications
• Home grown applications

3rd Party Applications

• Split the 3rd party applications into 2 sub groups

• Applications that do support Postgres
• These are prime candidates

• Applications that do not support Postgres
• These are potentially trapped
• Note the alternative databases if any

Home Grown Applications

• Very varied set of challenges
• Age of the application
• Size of the data
• Downtime window
• Specialized features
• Data access pattern
• Application development language
• Java
• .NET
• C/C++

Older Applications

• Usually very intense use of server side logic
• In the client/server era, most business logic
resided in stored procedures

• Brain drain
• Talent that wrote the application have moved on

• These are usually the scariest applications to
move, but have the largest upside

Large Databases

• Sheer data movement becomes a significant
factor in the migration

Downtime Window

• Some applications are 24x7 with very small
maintenance windows

• Coordinate effort needed for a production cut over
• Applications with nightly downtime windows are
ideal

Specialized Features

• Partitioning
• Spatial
• XML
• Flashback Query
• Full Text Search

Data Access Pattern

• Read mostly
• Append only
• Update intensive
• Insert and purge
• Nightly batch

Development Language

• Java
• .NET
• C/C++
• Perl/Python/PHP
• ORMs in use?

Scanning the Schema

• Many tools available for scanning an existing
schema, but 2 mainly used

• AWS Schema Conversion Tool (SCT)
• Creates an assessment report highlighting the
areas of a database that will require manual effort

• Free and closed source
• GUI

• Ora2PG
• Creates an assessment report for all schema
objects

• Free and open source
• Command line

Using SCT

• Everything is project
based

• A project has a source
and target database

Creating an SCT Project

• Define the source and
target database types

• OLTP vs OLAP
changes the available
choices

• Targets are all listed as
Amazon RDS endpoints,
but can be a local
PostgreSQL database

Specify an Oracle source

• Ensure the machine
running SCT can
connect to the Oracle
database

• Use the standard set of
connection parameters
for Oracle

Specify a Postres Target

• Running the initial
assessment on a local
instance of PostgreSQL
may simplify things in
some environments

• Use the same user
name in PostgreSQL
that is used in Oracle

SCT Settings

• The default settings
need to be adjusted to
be really useful

• To accurately determine
scope, all issues need
to be shown

Creating an Assessment Report

• A report needs to be
generated for each
schema in Oracle

• Produces a simple PDF
report

Analyzing the Report

We completed the analysis of your Oracle source database and estimate

that 100% of the database storage objects and 87% of database code

objects can be converted automatically or with minimal changes if you

select Amazon RDS for PostgreSQL as your migration target.

• Conversion != Perform well
• The details matter

Analyzing Storage Objects

• Storage object definitions generally come over
easily

• Data types frequently need adjusting

• Partitioning or other more advanced constructs
may come up here

Analyzing Database Code Objects

• Views frequently convert automatically
• Focus on performance testing

• Other objects are usually the telling indicator of
the complexity of a migration

Looking at the Details

• Issues typically follow patterns

• Can typically be categorized
into 3 buckets

• Ignore
• Functional
• Performance

Ignorable Items

• Invalid objects typically make
up the bulk of these

• These should be cleaned up
regardless of a migration just
as good practice

Ignorable Items

• Some are less obvious,
but can be determined
by quickly scanning the
object

• DBA maintenance
routines will be different
in PostgreSQL and
many times not needed

Functional Items

• There is usually a simple
work around for these items

• Requires manual
intervention to know the
correct one of many paths
to take

• Usually a pattern that can
be followed for other similar
items

Functional Items

• The solution of transaction
control inside of a
procedure can differ by
procedure

• Can be ignored

• A foreign data wrapper
(Database Link) can be
used

• Procedure can be
redesigned

Performance Items

• Usually the more time
consuming items to fix

• Frequently very specific
to Oracle

• Exceptions fall into this
category

• (Should be functional,
but its not)

Using Ora2PG

• Everything is run via the command line with
scripts and config files

• ora2pg.conf is the main config file

• Allows for flexibility in scanning many schemas
across many servers

• Learning curve is steeper than the GUI tools

Oracle Connection Information

• Set the Oracle home and standard connection
details

Set the Oracle home directory

ORACLE_HOME /home/user1/development/oracle/instantclient_12_1

Set Oracle database connection (datasource, user, password)

ORACLE_DSN dbi:Oracle:host=192.168.122.215;sid=orcl

ORACLE_USER reference

ORACLE_PWD password1

Oracle User Details

• Turn off some functionality if the Oracle user
does not have enough permissions

Set this to 1 if you connect as simple user and can not extract things

from the DBA_... tables. It will use tables ALL_... This will not works

with GRANT export, you should use an Oracle DBA username at ORACLE_USER

USER_GRANTS 0

Filtering Out Invalids

• Only try to migrate valid code
Enable this directive to force Oracle to compile schema before exporting code.
This will ask to Oracle to validate the PL/SQL that could have been invalidate
after a export/import for example. If you set the value to 1 will exec:
DBMS_UTILITY.compile_schema(schema => sys_context(’USERENV’, ’SESSION_USER’));
but if you probvide the name of a particular schema it will use the following
command: DBMS_UTILITY.compile_schema(schema => ’schemaname’);
COMPILE_SCHEMA 0

If the above configuration directive is not enough to validate your PL/SQL code
enable this configuration directive to allow export of all PL/SQL code even if
it is marked as invalid. The ’VALID’ or ’INVALID’ status applies to functions,
procedures, packages and user defined types.
EXPORT_INVALID 0

Running a Report

ora2pg -c ora2pg.conf -n REFERENCE --estimate_cost \

--cost_unit_value 20 --human_days_limit 30 \

--dump_as_html -t SHOW_REPORT > assessment.html

• “n”is the schema name
• “estimate_cost” generate a effort estimate
• “cost_unit_value” time duration to manually
modify something (20 minutes)

• “human_days_limit” threshold that identifies a
complex migration

Interpreting a Report

• Produces a simple and
self contained HTML file

• Broken into several
sections

• Does not identify
problem areas

Looking at the Details

• Shows a break down by object type and relative
complexity of each function

Looking at the Details

• The table analysis shows the row count of tables

• Also finds BLOBs
• Gives an indicator of the relative complexity of a
data migration

Looking at the Summary

• The total is for all database objects

• The estimated effort uses the cost unit value
• Assumes a 7 hour work day

• The migration level attempts to determine the
complexity of a migration

Scanning the Application

• AWS Schema Conversion Tool (SCT)
• Java
• C/C++
• C#

• Ora2PG
• Does not attempt to scan the application code

Using SCT for Applications

• Add an application to an
existing project

• Needs a database
connection to the
corresponding schema

Creating an Application Report

• A report can be
generated for all or part
of the source code tree

Looking at the Summary

• Identifies the relative scope of changes required

• Tries to classify the required changes by difficulty

Common Actions

• SCT has difficulty
determining the
completeness of SQL
that is constructed with
string concatenation

• Use it as a indicator of
where to look in the
code

Common Actions

• The more dynamic the SQL construction is
coded, the less likely SCT will evaluate it
correctly

False Positives

• SCT searches for keywords in the code so
frequently it picks up things that are not SQL

• Use the output as a guide and planning tool

Consolidating the Input

• Use the available tools to determine the relative
scope

• SCT can be used to evaluate the complexity of
the required changes and the amount of
application changes

• Ora2pg can be used to evaluate the amount of
database changes required

• Good old fashion gut instinct can be the fastest
analysis tool

Conversion Using SCT

Configuring SCT

• Before a conversion,
some changes to the
default settings will
improve the migration
project

• Adding all comments to
the generated PLpgSQL
will help the developers
interpreting the
generated output

Configuring SCT

• Creating multiple SQL
files will make the files
easier to manage for
large schemas

• Splitting the SQL
speeds up the data
loads

• Create indexes and
constraints after the
data load

Mapping Rules

• The default rules
convert the object
names to lower case

• If possible, a mapping
rule for changing data
types will save a lot of
time

• This is functionally not
necessary but makes
a huge performance
difference on the
converted application

Converting a Schema

• Once configured,
converting a schema
will bring all database
objects into the SCT
project

• This step may take a
while depending on the
size and complexity of
the schema

Check the Results

• Visually inspect the
resulting tables

• Look for patterns that
can be fixed using a
Mapping Rule

• Continue to iterate until
the obvious data types
can be automatically
mapped

Check the Results

• Visually inspect the
resulting views

• Note any conversions of
Global Temporary
Tables

• These will need to be
manually converted to
unlogged tables

Check the Results

• Visually inspect the
resulting functions

• Initially inspect the
parameters that the
match the data types of
the tables

• Most functions will need
at least minor manual
modification

Check the Results

• Visually inspect the
resulting packages

• Initially inspect the
package content names

• SCT prefixes
PACKAGE_NAME$
before each function
name

• This results in many
manual changes in
the application code

Extension Packs
• Provides an extension pack to ease a conversion
• It contains many Oracle functions and
procedures commonly used in applications

Extension Packs

• dbms_job
• dbms_random
• utl_smtp
• get_package_variable

• add_months
• instr
• sydate
• to_date
• to_char

• These functions can help during the initial
development phase to quickly create
interdependent functions

• All references to these functions should be
removed for the final production release

• Many of these functions are slow and
troublesome

Wrapper Functions

• The intent is good for using the extension pack
• Allows for easier unit testing especially with
sysdate

• Overloading allows for setting the value of a date
CREATE OR REPLACE FUNCTION aws_oracle_ext.”sysdate”()

RETURNS timestamp without time zone AS

$BODY$

DECLARE

l_var1 interval ;

BEGIN

l_var1 := ’0 hour’; /* Please type your value instead of 0 */

return (clock_timestamp()::TIMESTAMP(0) WITHOUT TIME ZONE) + l_var1;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

Wrapper Functions

• It is much more efficient to create sysdate as a
STABLE SQL function

CREATE OR REPLACE FUNCTION training.sysdate()

RETURNS timestamp AS

$$

SELECT CURRENT_TIMESTAMP::timestamp(0);

$$ LANGUAGE sql STABLE;

SELECT count(aws_oracle_ext.sysdate())

FROM generate_series(1, 1000000);

count

1000000

(1 row)

Time: 2787.506 ms (00:02.788)

SELECT count(training.sysdate())

FROM generate_series(1, 1000000);

count

1000000

(1 row)

Time: 334.603 ms

Export the Schema

• For quick tests, applying the
schema directly to the
database is fine

• For the actual conversion,
exporting the schema as files
allows for

• Modification of functions and
views noted during manual
inspection

• Delaying creating indexes
and constraints until the data
is loaded

Export the Schema

• SCT will create a file for each
type of object

• For many environments, it is
more convenient to break
each object into its own file
and tracked in source control

Fixing Issues

• Several of the files will require manual
intervention

• Look for the word Severity

IF (v_Result = 1) THEN

/*

[5334 - Severity CRITICAL - Unable convert statements ...

EXECUTE IMMEDIATE v_Cmd

*/

v_Message := CONCAT_WS(’’, ’@Created@ - ’, v_Cmd);

END IF;

EXCEPTION

WHEN others THEN

Fixing Issues

• Convert data types in functions to match the
pattern in the tables

CREATE OR REPLACE FUNCTION

reference.ad_column_sync(IN p_pinstance_id DOUBLE PRECISION)

RETURNS void

AS

$BODY$

/* Logistice */

DECLARE

v_ResultStr CHARACTER VARYING(2000);

v_Message CHARACTER VARYING(2000);

v_Result DOUBLE PRECISION := 1

/* 0=failure */;

v_Record_ID DOUBLE PRECISION;

v_AD_User_ID DOUBLE PRECISION

Loading the Schema

• Once the objects have been manually adjusted,
load the following object types into PostgreSQL

• Databases
• Schemas
• Tables
• Views
• Functions
• Sequences

• Other object types will be loaded after the data
load

Conversion Using Ora2PG

Initializing Ora2PG
ora2pg -b training --init_project training

Creating project training.

./training/

schema/

dblinks/

directories/

functions/

grants/

mviews/

packages/

partitions/

procedures/

sequences/

synonyms/

tables/

tablespaces/

triggers/

types/

views/

sources/

functions/

mviews/

packages/

partitions/

procedures/

triggers/

types/

views/

data/

config/

reports/

Generating generic configuration file

Creating script export_schema.sh ...

Creating script import_all.sh ...

Configuring Ora2PG

• Modify config/ora2pg.conf to customize the
settings for a specific environment

• Connection information should be the same as
the analysis phase

Set the Oracle home directory

ORACLE_HOME /usr/lib/oracle/12.1/client64

Set Oracle database connection (datasource, user, password)

ORACLE_DSN dbi:Oracle:host=mydb.mydom.fr;sid=SIDNAME;port=1521

ORACLE_USER system

ORACLE_PWD manager

Configuring Ora2PG

• Configure the schema section so a schema is
created and exported instead of using the public
schema

#--

SCHEMA SECTION (Oracle schema to export and use of schema in PostgreSQL)

#--

Export Oracle schema to PostgreSQL schema

EXPORT_SCHEMA 1

Oracle schema/owner to use

SCHEMA CHANGE_THIS_SCHEMA_NAME

Enable/disable the CREATE SCHEMA SQL order at starting of the output file.

It is enable by default and concern on TABLE export type.

CREATE_SCHEMA 1

Configuring Ora2PG

• Sometime names of objects matter

By default, primary key names in the source database are ignored, and

default key names are created in the target database. If this is set

to true, primary key names are kept.

KEEP_PKEY_NAMES 0

By default all object names are converted to lower case, if you

want to preserve Oracle object name as-is set this to 1. Not recommended

unless you always quote all tables and columns on all your scripts.

PRESERVE_CASE 0

Configuring Ora2PG

• Sometime names of objects matter

Enable this directive to rename all indexes using tablename_columns_names.

Could be very useful for database that have multiple time the same index

name or that use the same name than a table, which is not allowed

Disabled by default.

INDEXES_RENAMING 0

Enable this directive if you have tables or column names that are a reserved

word for PostgreSQL. Ora2Pg will double quote the name of the object.

USE_RESERVED_WORDS 1

Configuring Ora2PG

• Control the output to match the development and
source control process

FILE_PER_CONSTRAINT 1

FILE_PER_INDEX 1

FILE_PER_FKEYS 1

FILE_PER_TABLE 1

Configuring Ora2PG

• Map NUMBER correctly

If set to 1 replace portable numeric type into PostgreSQL internal

type. If you have monetary fields or don’t want rounding issues with

the extra decimals you should preserve the same numeric(p,s).

PG_NUMERIC_TYPE 1

If NUMBER without precision are set to DEFAULT_NUMERIC (see bellow).

PG_INTEGER_TYPE 1

NUMBER() without precision are converted by default to bigint only if

PG_INTEGER_TYPE is true. You can overwrite this value to any PG type,

like integer or float.

DEFAULT_NUMERIC bigint

Configuring Ora2PG

• Convert Oracle syntax

Enable this configuration directive to allow export of all PL/SQL code

even if it is marked as invalid. The ’VALID’ or ’INVALID’ status

applies to functions, procedures, packages and user defined types.

EXPORT_INVALID 0

Enable PLSQL to PLPSQL conversion. Default enabled.

PLSQL_PGSQL 1

Ora2Pg can replace all conditions with a test on NULL by a call to

the coalesce() function to mimic the Oracle behavior where empty

field are considered equal to NULL.

NULL_EQUAL_EMPTY 1

If you don’t want to export package as schema but as simple functions

you might also want to replace all call to package_name.function_name.

PACKAGE_AS_SCHEMA 1

Handling Errors

• Turing off stopping on errors will allow the script
to run to completion

• Allows for handling of errors in bulk

Set it to 0 to not include the call to \set ON_ERROR_STOP ON in all SQL

scripts. By default this order is always present.

STOP_ON_ERROR 0

Converting a Schema

./export_schema.sh

[================>] 529/529 tables (100.0%) end of scanning.

[================>] 13/13 objects types (100.0%) end of objects auditing.

[================>] 529/529 tables (100.0%) end of scanning.

[================>] 529/529 tables (100.0%) end of table export.

[================>] 1/1 packages (100.0%) end of output.

[================>] 108/108 views (100.0%) end of output.

[================>] 4/4 sequences (100.0%) end of output.

[================>] 0/0 triggers (100.0%) end of output.

[================>] 35/35 functions (100.0%) end of functions export.

[================>] 21/21 procedures (100.0%) end of procedures export.

...

[================>] 1/1 packages (100.0%) end of output.

[================>] 108/108 views (100.0%) end of output.

[================>] 0/0 triggers (100.0%) end of output.

[================>] 35/35 functions (100.0%) end of functions export.

[================>] 21/21 procedures (100.0%) end of procedures export.

Check the Results

• Visually inspect the resulting tables
./schema/tables/tables.sql

• Look for column defaults that should be modified

...

created timestamp NOT NULL DEFAULT LOCALTIMESTAMP,

createdby bigint NOT NULL,

updated timestamp NOT NULL DEFAULT LOCALTIMESTAMP,

updatedby bigint NOT NULL,

...

Wrapper Functions

• It is efficient to create sysdate as a STABLE SQL
function

• Allows for control of the result in the testing
phase

CREATE OR REPLACE FUNCTION training.sysdate()

RETURNS timestamp AS

$$

SELECT CURRENT_TIMESTAMP::timestamp(0);

$$ LANGUAGE sql STABLE;

Loading the Schema
./import_all.sh -?

usage: import_all.sh [options]

Script used to load exported sql files into PostgreSQL in practical

manner allowing you to chain and automatically import schema and data.

options:

-a import data only

-b filename SQL script to execute just after table creation to fix

-f force no check of user and database existing and do not

-i only load indexes, constraints and triggers

-I do not try to load indexes, constraints and triggers

-j cores number of connection to use to import data or indexes

-n schema comma separated list of schema to create

-P cores number of tables to process at same time for data import

-s import schema only, do not try to import data

-t export comma separated list of export type to import

-x import indexes and constraints after data

-y reply Yes to all questions for automatic import

Loading the Schema

• Try importing the schema that was automatically
converted

./import_all.sh -y -s -h localhost -d training -U jim -o jim > out

• There WILL be errors
psql:./schema/packages/oos_util_validation/is_number_package.sql:44:

ERROR: unrecognized exception condition ”value_error”

CONTEXT: compilation of PL/pgSQL function ”is_number” near line 9

psql:./schema/packages/oos_util_validation/is_date_package.sql:5:

ERROR: current transaction is aborted, commands ignored until end

of transaction block

Loading the Schema

• Fix all syntax errors

• Many issues will be very simple to rectify with
looking at the error in context of the wider code
base

diff packages/oos_util_validation/is_number_package.sql \

../orig/packages/oos_util_validation/is_number_package.sql

37c37

< when value_error then

> when others then

Loading the Schema

• Skip missing dependencies during the first pass
• Note: This will cause all subsequent objects of a
given type to fail

psql:./schema/views/M_INOUT_LINE_VT_view.sql:55:

ERROR: function productattribute(bigint) does not exist

LINE 10: COALESCE(COALESCE(pt.Name,p.Name)||productAttribute(iol.M_A...

^

HINT: No function matches the given name and argument types. You might

need to add explicit type casts.

psql:./schema/views/RV_CLICK_MONTH_view.sql:5:

ERROR: current transaction is aborted, commands ignored until end

of transaction block

psql:./schema/views/RV_CLICK_MONTH_view.sql:15:

ERROR: current transaction is aborted, commands ignored until end

of transaction block

Loading the Schema

• Usually, views are the most sensitive to errors
• Loading them last will allow all dependencies to
be created first

./import_all.sh -y -s \

-t TYPE,TABLE,PACKAGE,SEQUENCE,FUNCTION,

PROCEDURE,PARTITION,VIEW,MVIEW

-h localhost -d training -U jim -o jim

Testing

Testing

• Unit Testing

• Data Validation

• An full QA cycle

Unit Testing

• A unit test framework is needed
• Commonly already available for the application
code

• Can be simply SQL script fed to SQL*Plus and
psql

• Access to the source database is only needed to
generate expected results

Unit Testing

• Create at least 1 test case for each database
object

• There should be enough cases for have full code
coverage across each object

• All permutations of parameters should be tested

Unit Testing

• Start with a simple function

create or replace FUNCTION charAt

(

p_string VARCHAR2,

p_pos NUMBER

)

RETURN VARCHAR2

AS

BEGIN

RETURN SUBSTR(p_string, p_pos, 1);

END;

Unit Testing

• At a minimum, a positive test case should be
created

SQL> SELECT charAt(’PostgreSQL’, 4) AS a FROM dual;

A

t

Unit Testing

• Each parameter should be tested for NULL

SQL> SELECT charAt(null, 4) AS a FROM dual;

A

--

SQL> SELECT charAt(’PostgreSQL’, null) AS a FROM dual;

A

--

Unit Testing

• Out of bounds conditions should be tested

SQL> SELECT charAt(’PostgreSQL’, -1) AS a FROM dual;

A

L

SQL> SELECT charAt(’P’, 4) AS a FROM dual;

A

Unit Testing

• Dates are parameters should be carefully
considered

create or replace FUNCTION addDays

(

p_date DATE,

p_days NUMBER

)

RETURN DATE
AS

BEGIN

RETURN TRUNC(p_date) + p_days;

END;

Unit Testing

• Do not create test cases that change over time

SQL> SELECT addDays(SYSDATE, 7) AS a FROM dual;

A

02-APR-18

Unit Testing

• The results of the test case should be immutable

SQL> SELECT addDays(to_date(’2000-01-01’, ’YYYY-MM-DD’), 7) AS a

2 FROM dual;

A

08-JAN-00

Unit Testing
• Multiple code paths need to be tested

create or replace FUNCTION acctBalance

(p_Account_ID IN NUMBER, p_AmtDr IN NUMBER, p_AmtCr IN NUMBER)

RETURN NUMBER

AS
...

BEGIN

v_balance := p_AmtDr - p_AmtCr;

IF (p_Account_ID > 0) THEN

SELECT AccountType, AccountSign

INTO v_AccountType, v_AccountSign

FROM C_ElementValue

WHERE C_ElementValue_ID=p_Account_ID;

-- Natural Account Sign

IF (v_AccountSign=’N’) THEN

IF (v_AccountType IN (’A’,’E’)) THEN

v_AccountSign := ’D’;

ELSE

...

Unit Testing
SQL> SELECT acctBalance(587,11,22) AS a FROM dual;

A

11

SQL> SELECT acctBalance(590,11,22) AS a FROM dual;

A

11

SQL> SELECT acctBalance(471,11,22) AS a FROM dual;

A

-11

SQL> SELECT acctBalance(-1,11,22) AS a FROM dual;

A

-11

Unit Testing

• Running the test cases against PostgreSQL the
first time usually produces many errors

• Remember: PostgreSQL does not fully “compile”
the function until it is first run

> SELECT charAt(’PostgreSQL’, 4) AS a;

ERROR: function substr(text, bigint, integer) does not exist

LINE 1: SELECT SUBSTR(p_string, p_pos, 1)

^

HINT: No function matches the given name and argument types. You

might need to add explicit type casts.

QUERY: SELECT SUBSTR(p_string, p_pos, 1)

CONTEXT: PL/pgSQL function charat(text,bigint) line 3 at RETURN

Unit Testing

• Fix the errors to return the expected results
• Hint: Use this as an opportunity to make simple
improvements

diff CHARAT_function.sql ../orig/CHARAT_function.sql

11c11

< RETURN SUBSTR(p_string, p_pos::int, 1);

> RETURN SUBSTR(p_string, p_pos, 1);

17c17

< IMMUTABLE;

> STABLE;

Unit Testing

• Analyze the results to determine the correct
course of action for different result

• Fix the PostgreSQL function?
• Fix the expected results?

SQL> SELECT charAt(’PostgreSQL’, -1) AS a FROM dual;

A

L

> SELECT charAt(’PostgreSQL’, -1) AS a;

a

Unit Testing

• Outputted date styles will be different

SQL> SELECT addDays(to_date(’2000-01-01’, ’YYYY-MM-DD’), 7) AS a

2 FROM dual;

A

08-JAN-00

> SELECT addDays(to_date(’2000-01-01’, ’YYYY-MM-DD’), 7) AS a;

a

2000-01-08 00:00:00

Unit Testing

• Change the test case to create consistent results
for both databases

SQL> SELECT to_char(addDays(to_date(’2000-01-01’, ’YYYY-MM-DD’), 7), ’YYYY-MM-DD’) AS a

2 FROM dual;

A

2000-01-08

> SELECT to_char(addDays(to_date(’2000-01-01’, ’YYYY-MM-DD’), 7), ’YYYY-MM-DD’) AS a;

a

2000-01-08

Data Validation

• Determine the amount of validation required for
each development stage

• Development
• QA
• Staging
• Production

• Develop a plan and strategy for each stage

Data Validation

• Spot checking by getting the counts

SQL> SELECT count(*) FROM AD_ELEMENT;

COUNT(*)

2155

> SELECT count(*) FROM AD_ELEMENT;

count

2155

Data Validation

• Check some data by using aggregates

SQL> SELECT sum(ad_element_id), sum(length(name)) FROM AD_ELEMENT;

SUM(AD_ELEMENT_ID) SUM(LENGTH(NAME))

------------------ -----------------

3702371 29254

> SELECT sum(ad_element_id), sum(length(name)) FROM AD_ELEMENT;

sum | sum

---------+-------

3702371 | 29254

Data Validation

• To be entirely sure all data is migrated
accurately, checksums must be calculated for all
rows and all columns

• There are several open source and commercial
tools available

Migrating Data

Migrating Data

• Files
• Foreign Data Wrapper

• Replication

File Export

• Pros
• Ideal for development and testing environments
• Repeatable with a constant data set
• No direct access to the source database is
necessary

• Cons
• Moving the data twice
• Requires the source database to be quiesced

File Export

• Export the data out of the source system as a file
• Scripts
• UI like SQL Developer
• ETL Tools

• The best format is usually CSV but may be
different based on the data

• Load the data using the COPY command

Copy

• COPY is an SQL command, so FROM/TO are
with respect to the server

• Most other databases have a “load utility” which
pushes data

• COPY FROM
• Loads data into the database (pull-in)

• COPY TO
• Exports data from the database

Copy (cont.)

COPY table_name [(column_name [, ...])]

FROM { ’filename’ | PROGRAM ’command’ | STDIN }

[[WITH] (option [, ...])]

COPY { table_name [(column_name [, ...])] | (query) }

TO { ’filename’ | PROGRAM ’command’ | STDOUT }

[[WITH] (option [, ...])]

Copy (cont.)

• COPY FROM loads data
• COPY FROM will use free space if available,
otherwise data is loaded at end of table

• Acts just like a stream of INSERT’s
• Cannot specify REPLACE, APPEND etc

• Other ops on table continue as normal
• Can only load tables, not views
• All triggers and constraints will be applied
• RULE processing will not be performed

File Export

• Ora2PG also supports exporting and importing
data as files

ora2pg -t COPY -o data.sql -b data -c config/ora2pg.conf

import_all.sh -a -h localhost -d training -U jim -o jim

Foreign Data Wrapper

• Pros
• Data is moved only once so the performance is
good

• Transformations can be performed using SQL

• Cons
• Direct access is required between the source and
destination

• Requires the source database to be quiesced
• Does not work in all environments such as RDS

Foreign Data Wrapper

• Create a foreign table for each table to migrate
CREATE SERVER oracle_server FOREIGN DATA WRAPPER

oracle_fdw OPTIONS (dbserver ’ORACLE_DBNAME’);

CREATE USER MAPPING FOR CURRENT_USER

SERVER oracle_server

OPTIONS (user ’scott’, password ’tiger’);

CREATE FOREIGN TABLE oracle.dept (

deptno int,

dname varchar(14),

loc varchar(13)

)

SERVER oracle_server

OPTIONS (schema ’scott’, table ’dept’);

Foreign Data Wrapper

• Load the data using INSERT statements

INSERT INTO dept

SELECT deptno, dname, loc FROM oracle.dept;

Replication

• Pros
• The databases can be synced with no downtime
of the source

• Requires minimal downtime for the production
switch over

• Can be setup far in advance of the cut over date

• Cons
• Can take a very long time to synchronize
• No transformations on the data being migrated
• Trigger based systems put extra load on the
source

Replication

• There are several cross database replication
products including open source options

• SymmetricDS
• HVR
• AWS DMS

• If there is already a replication tool in place, use it

AWS Database Migration Service

• A data migration task
can be created from
inside of SCT

• Note: Some
configuration necessary
through the AWS
console

AWS Database Migration Service

• Decide on a one time
migration or an ongoing
replication

• Usually, truncating the
data is recommended

• LOBs can take a while
to migrate

AWS Database Migration Service

• Start the migration task

• Check for errors

Application Migration

Language Matters

• ORMs (Ruby Python)

• Java
• .NET
• C/C++

Finding Dynamic SQL

• Search for built-in functions
• SYSDATE
• NVL
• DECODE
• ROWNUM

• Search for system catalogs
• ALL_TABLES

• Search for DUAL

Data Types

• Many applications need to be changed as data
types change

• This is commonly seen around the Oracle
NUMBER type

• Frequently move to BIGINT in PostgreSQL
• Application code may be treating the columns as
INT or BIGDECIMAL

Tuning

Tuning

• Functionally, many things in PostgreSQL work
similarly to other databases, but the underlying
implementation is different causing different
performance results

• Partitioning
• Exception Handling
• Updates (Table Bloat)

Partitioning

• PostgreSQL does not have all partitioning types
• Hash partitioning is currently not available
• It is possible to mock the functionality, but
performance is poor

• PostgreSQL does not perform well with a large
number of partitions

• Planning times increase based on the partitions
• Daily partitions going back years are troublesome

Exception Handling

• An exception is an identifier in PL/pgSQL that is
raised during execution

• It is raised when an error occurs or explicitly by
the function

• It is either handled in the EXCEPTION block or
propagated to the calling environment

[DECLARE]

BEGIN

Exception/Error is Raised

EXCEPTION

Error is Trapped

END

Exception Handling
• TIP: Use exceptions only when necessary, there
is a large performance impact

• Sub transactions are created to handle the
exceptions

CREATE FUNCTION t1()

RETURNS void AS $$

DECLARE

i integer;

BEGIN

i := 1;

END

$$ LANGUAGE plpgsql;

Avg Time: 0.0017ms

CREATE FUNCTION t2()

RETURNS void AS $$

DECLARE

i integer;

BEGIN

i := 1;

EXCEPTION

WHEN OTHERS THEN

RETURN;
END

$$ LANGUAGE plpgsql;

Avg Time: 0.0032ms

Updates

• PostgreSQL uses MVCC to allow for concurrenct
access to data

• Updates are essentially an INSERT and a logical
DELETE

• Makes updates very fast since

• Leaves around dead rows that need to be
cleaned up

• Causes performance issues if not dealt with

What is MVCC?

• Multiversion Concurrency Control

• Allows Postgres to offer high concurrency even
during significant database read/write activity

• Readers never block writers, and writers never
block readers

• Reduces locking requirements, but does not
eliminate locking

MVCC Behavior

• Visibility is driven by
XID

• Tuples have an
XMIN and XMAX

Updates

• Craft a maintenance plan to clean up dead rows
• VACUUM

• AutoVacuum does a good job for most workloads
• More extreme behaviors require custom
maintenance

• Try to design the bloat out of the application
• Combine multiple updates on a row into a single
operation

• Separate highly updated columns into different
tables

Production Cut Over

Fall-back Plan

• Have a fall-back plan for the transition period
• Do not plan on falling back after the roll-out

• Plan on falling forward
• Having bi-directional replication does not work in
practice

After Production

• Set monitoring baselines
• Plan and adjust the maintenance schedule
• Enjoy PostgreSQL

