
Propagate Data Changes
Without Triggers!

Jonathan S. Katz

NYC PostgreSQL User Group

December 14, 2017

About
• CTO, VenueBook

• Co-Organizer, NYC PostgreSQL User Group
(NYCPUG)

• Director, United States PostgreSQL Association

• Volunteer on postgresql.org

• Co-Founder, PGConf US

• @jkatz05

2

http://postgresql.org

Imagine...

• We manage the space at Workbench!

• We have a set of operating hours where we can book
events

• Only one event can be booked at a time

3

The Problem: Availability

12/14/2017 00:00 12/15/2017 00:00

4

The Problem: Availability

12/14/2017 00:00 12/15/2017 00:00

12/14/2017 00:00 12/15/2017 00:00

12/14/2017 00:00 12/15/2017 00:00

12/14/2017 00:00 12/15/2017 00:00

5

Easy, Right?

6

But...
• Availability

• Just for one day - what about other days?

• What happens with data in the past?

• What happens with data in the future?

• Unavailability

• Ensure no double-bookings

• Overlapping Events?

• Just one space

7

🤔

8

Managing Availability

• Can create rules that can generate availability

9

availability_rule
id <serial> PRIMARY KEY
room_id <int> REFERENCES (room)
days_of_week <int[]>
start_time <time>
end_time <time>
generate_weeks_into_future <int>
DEFAULT 52

room
id <serial>
PRIMARY KEY
name <int><text>

Managing Availability

• The rules can then determines what the availability is for a
given date

10

availability_rule
id <serial> PRIMARY KEY
room_id <int> REFERENCES (room)
days_of_week <int[]>
start_time <time>
end_time <time>
generate_weeks_into_future <int>
DEFAULT 52

room
id <serial>
PRIMARY KEY
name <int>

availability
id <serial> PRIMARY KEY
room_id <int> REFERENCES
(room)
availability_rule_id <int>
REFERENCES (availabilityrule)
available_date <date>
available_range <tstzrange>

<text>

Managing Availability

• We need to know when a room is being used

11

availability_rule
id <serial> PRIMARY KEY
room_id <int> REFERENCES (room)
days_of_week <int[]>
start_time <time>
end_time <time>
generate_weeks_into_future <int>
DEFAULT 52

room
id <serial>
PRIMARY KEY
name <int>

availability
id <serial> PRIMARY KEY
room_id <int> REFERENCES
(room)
availability_rule_id <int>
REFERENCES (availabilityrule)
available_date <date>
available_range <tstzrange>

unavailability
id <serial> PRIMARY KEY
room_id <int> REFERENCES
(room)
unavailable_date <date>
unavailable_range <tstzrange>

<text>

Managing Availability

• And we can have a calendar set up for quick lookups

12

availability_rule
id <serial> PRIMARY KEY
room_id <int> REFERENCES (room)
days_of_week <int[]>
start_time <time>
end_time <time>
generate_weeks_into_future <int>
DEFAULT 52

room
id <serial>
PRIMARY KEY
name <text>

availability
id <serial> PRIMARY KEY
room_id <int> REFERENCES
(room)
availability_rule_id <int>
REFERENCES (availabilityrule)
available_date <date>
available_range <tstzrange>

unavailability
id <serial> PRIMARY KEY
room_id <int> REFERENCES
(room)
unavailable_date <date>
unavailable_range <tstzrange>

calendar
id <serial> PRIMARY KEY
room_id <int> REFERENCES
(room)
status <text> DOMAIN:
{available, unavailable, closed}
calendar_date <date>
calendar_range <tstzrange>

Semi-out-of-scope but...

• GiST vs SP-GiST on the tstzrange types

13

Keeping the Calendar in Sync

• Triggers!

• Triggers can fire BEFORE and AFTER write operations
[INSERT, UPDATE, DELETE]

• Triggers must successfully execute before transaction
commits

14

Demo #1: The Setup

15

Demo #2:
Basic Management

16

Demo #2 Lessons
• [Test your live demos before running them, and you will have

much success!]

• availability_rule inserts took some time, ~500ms

• availability: INSERT 52

• calendar: INSERT 52 from nontrivial function

• Updates on individual availability / unavailability are not too
painful

• Lookups are faaaaaaaast

17

Demo #3:
Go Big or Go Home

18

Demo #3 Lessons

• Even with only 100 more rooms with a few set of rules,
rule generation time increased 30%

• Lookups are still lightning fast!

19

Logical Decoding
• Added in PostgreSQL 9.4

• Replays all logical changes made to the database

• Create a logical replication slot in your database

• Only one receiver can consume changes from one slot at
a time

• Slot keeps track of last change that was read by a receiver

• If receiver disconnects, slot will ensure database holds
changes until receiver reconnects

20

Logical Decoding
Out of the Box

• A logical replication slot has a name and a decoder

• PostgreSQL comes with the "test" decoder

• Have to write a custom parser to read changes from
test decoder

21

Decoder Examples

• wal2json: https://github.com/eulerto/wal2json

• jsoncdc: https://github.com/posix4e/jsoncdc

22

https://github.com/eulerto/wal2json
https://github.com/posix4e/jsoncdc

Driver Support

• C: libpq

• pg_recvlogical

• PostgreSQL functions

• Python: psycopg2 - version 2.7

• JDBC: version 42

23

Demo #4: Prerequisites
• wal2json

• In postgresql.conf (requires restart):

• wal_level = logical

• max_wal_senders = 2

• max_replication_slots = 2

• In pg_hba.conf, use these DEVELOPMENT ONLY settings (requires reload):

• local replication jkatz trust

• In the databases streaming changes, run:

• SELECT * FROM pg_create_logical_replication_slot('calendar',
'wal2json');

• ONLY WORKS ON TABLES WITH PRIMARY KEYS

24

Demo #4:
Watch the Changes Fly By

25

Demo #4 Lessons

• Every change in the database is streamed

• Need to be aware of the logical decoding format

26

Thoughts

• We know it takes time to regenerate calendar

• Want to ensure change propagates, but want to make
sure user has great experience

27

Demo #5:
Calendar Streaming

Changes

28

Demo #5 Lessons
• Logical decoding allows the bulk inserts to occur

significantly faster from a transactional view

• DELETEs are tricky if you need to do anything other than
using the PRIMARY KEY

• Based on implementation, changes applied serially

• Potential bottleneck for long running queries

• Use a distributed streaming tool like Kafka to perform
follow-up queries

29

Conclusions
• Triggers will keep your data in sync but can have significant performance overhead

• Utilizing a logical replication slot can eliminate trigger overhead and transfer the
computational load elsewhere

• Not a panacea: still need to use good architectural patterns!

• We also inadvertently covered a lot of other PostgreSQL goodies!

• Range types

• Recursive queries

• generate_series

• LATERAL

30

Thank You! Questions?

31

@jkatz05

