
Deep dive into PostgreSQL Authentication Methods

Objectives
A) Understand the basics of authentication methods supported by PostgreSQL
B) Understand how authentication protocols work over the wire to provide user authentication
C) Learn how to setup PostgreSQL to authenticate users using all the supported methods

We have a total of eleven topics to cover:

1. RADIUS (30)
2. PAM (30)
3. IDENT (10)
4. Peer (5)
5. Trust (10)
6. Password (5)
7. MD5 (5)
8. SCRAM (10)
9. Certificate (20)
10. Kerberos (30)
11. LDAP (20)

Total Estimated Time Required including questions if any = 175 minutes

1/68

Deep dive into PostgreSQL Authentication Methods

Presenter
My name is Abbas, I have a Masters in Computer Engineering. I have spent most of my career in product
development. I work as a Senior Architect at EnterpriseDB. My work highlights are as follows:

• Schema Cloning with support for parallelism using Background Workers
• Distributed Transactions (XA) Compliance for PostgreSQL using PgBouncer
• Oracle Compatible Packages for IBM DB2 : UTL_ENCODE, UTL_TCP, UTL_SMTP, UTL_MAIL
• HDFS_FDW, Mongo_FDW, MySQL FDW
• Postgres-XC

Email : abbas.butt@enterprisedb.com
Linkedin : https://pk.linkedin.com/in/abbasbutt
Blog : https://abbas-technical.blogspot.com

2/68

mailto:abbas.butt@enterprisedb.com
https://abbas-technical.blogspot.com/

Deep dive into PostgreSQL Authentication Methods

Access, Authentication, Authorization and Accounting

Suppose we have a services department in our company that provides the following paid services for personal use
over the company wide intranet:

• Printing
• Scanning

In order for the co-workers to use the services they have to connect to the print server and submit their documents
for printing in the queue.
In order for co-workers to use the scanner, they have to scan their documents on the scanner, the scanner will save
the scanned document in the shared folder on the FTP server. The co-worker can than copy the scanned copy of the
document from the shared folder.

Also suppose the following
- Executive Department of the company can use both the services
- Support department can use Printing Services only
- Research department can use Scanning services only.
- The rest of the departments of the company cannot use any of the services.

In order to implement the above scenario with in the company we will use the following strategy

People who do not work for the company cannot access the company's intranet hence they cannot use the services. If
the company has wired network physical access to the company's switches is restricted. If the company has wireless
access point, access can be restricted using passwords etc.

All the company employees can access the company's intranet. To verify which department a particular employee
belongs to, each employee chooses a user-name and password that is shared with the services department. The
services department creates users on its authentication server. Only the accounts of employees working in
Executive, Support and Research department are created on the authentication server.
When the employee wants to print or scan he connects to the authentication server of the services department, and
provides user-name and password. This identifies the employee and his department.
Once authenticated the authentication server knows which department the user belongs to and hence can decide
which services he is authorized to use according to the rules defined above.
When the employee actually uses any of the services he is authorized to use these actions are recorded so that the
employee can be billed accordingly. Each service that the employee uses has to be accounted for.

3/68

Deep dive into PostgreSQL Authentication Methods

The main purpose of authentication is identification and the main purpose of authorization is to put a control on
usage of resources. Accounting on the other hand makes sure that usage of a resource by an authorized user is
recorded properly.

Collectively these three functions Authentication, Authorization & Accounting are called AAA. AAA is specified
through various RFCs. Generic AAA architecture is specified in RFC 2903.

RADIUS is a protocol which is used to provide AAA on TCP/IP networks. RADIUS is an acronym for Remote
Access Dial In User Service. RADIUS was part of an AAA solution delivered by Livingston Enterprises to Merit
Network in 1991.
The RADIUS protocol was standardized using RFCs in 1997. RFC2865 covers the RADIUS protocol, and RFC2866
covers RADIUS accounting.

FreeRADIUS is an open source implementation of the RADIUS protocol and its extensions.

4/68

Deep dive into PostgreSQL Authentication Methods

An overview of RADIUS protocol when used as authentication
server for PostgreSQL

5/68

 Negotiate SSL Request
 00 00 00 08 04 d2 16 2f
 Length SSL Code

Server can respond with either 'N','S' or 'E'
In our case server responds with 'N' meaning No

 Start up Request
 What is server's authentication scheme?
 While we are asking this question please note
 User name, Database name, client encoding etc

00 00 00 58 00 03 00 00 75 73 65 72 00 70 6f 73 ...X....user.pos
74 67 72 65 73 00 64 61 74 61 62 61 73 65 00 70 tgres.database.p
6f 73 74 67 72 65 73 00 61 70 70 6c 69 63 61 74 ostgres.applicat
69 6f 6e 5f 6e 61 6d 65 00 70 73 71 6c 2e 62 69 ion_name.psql.bi
6e 00 63 6c 69 65 6e 74 5f 65 6e 63 6f 64 69 6e n.client_encodin
67 00 55 54 46 38 00 00 g.UTF8..

Server is expecting password in clear text
52 00 00 00 08 00 00 00 03
Authentication Request Length Clear-text password

 Password response
 70 00 00 00 0d 70 6f 73 74 67 72 65 73 00
 Password response Length Password terminated by null

Psql client PostgreSQL FreeRADIUS

 Access Request

 Access Accept

Authentication Reply
52 00 00 00 08 00 00 00 00
Authentication Request Length User authenticated

Status Parameters
 'S'|Length 4 bytes|Param Name | Param Value

Deep dive into PostgreSQL Authentication Methods

Access Request Packet
01 16 00 42 16 e9 5f 9a 91 ab ba 93 68 d6 04 d8 ...B.._.....h...
51 bb ce 4b 06 06 00 00 00 08 01 0a 70 6f 73 74 Q..K........post
67 72 65 73 20 0c 70 6f 73 74 67 72 65 73 71 6c gres .postgresql
02 12 db 7c ad 01 60 89 5a b8 00 62 b1 f8 5e 24 ...|..`.Z..b..^$
01 a4 ..

[1] Code: Access-Request (1)
[1] Packet identifier: 0x16 (22)
 RADIUS uses UDP by default. In case a packet is retransmitted
 this field remains the same. This allows the server to respond
 to requests by matching identifiers.
[2] Length: 66 - the length of complete packet
[16] Authenticator: 16e95f9a91abba9368d604d851bbce4b
 A random number not to be repeated again.
Attribute Value Pairs
 AVP: t=Service-Type(6) : l= 6 : Authenticate Only(8)
 AVP: t=User-Name(1) : l=10 : postgres
 AVP: t=NAS-Identifier(32): l=12 : postgresql
 AVP: t=User-Password(2) : l=18 : Encrypted
 Generated by XOR-ing the password with the
 md5 hash of the shared secret & authenticator

 To verify the password all the server has to do is
 compute the md5 hash of the shared secret & authenticator
 and XOR with this byte stream. This will reveal the password
 because if a XOR b = c, then c XOR b = a

Access Accept Packet
02 16 00 2d 41 f5 6e c0 ba f0 c2 e2 99 73 5b 5b ...^A.n......s[[
8f 4d 91 0a 12 19 48 65 6c 6c 6f 2c 20 70 6f 73 .M...JHello, pos
74 67 72 65 73 20 57 65 6c 63 6f 6d 65 tgres Welcome

[1] Code: Access-Accept (2)
[1] Packet identifier: 0x16 (22)
[2] Length: 45
[16] Authenticator: 41f56ec0baf0c2e299735b5b8f4d910a
 MD5(Code+ID+Length+RequestAuth+Attributes+Secret)
 where + denotes concatenation.

Client can verify that the server has the secret
by computing the same MD5 hash

Attribute Value Pairs
 AVP: t=Reply-Message(18) : l=25 : Hello, postgres Welcome

6/68

Deep dive into PostgreSQL Authentication Methods

Configuration Steps

1. Install FreeRADIUS.
yum install freeradius
yum install freeradius-utils

2. Check Installation
radiusd -v
radiusd: FreeRADIUS Version 3.0.13, for host x86_64-redhat-linux-gnu,
built on Aug 23 2017 at 15:18:22
FreeRADIUS Version 3.0.13
Copyright (C) 1999-2017 The FreeRADIUS server project and contributors

3. Configure Shared Secret
WARNING : Please use a shared secret which contains no capital letters.
In the file /etc/raddb/clients.conf mention the shared secret in the sections

client localhost
{

...
secret = macbookpro
...

}
client localhost_ipv6

{
ipv6addr = ::1
secret = macbookpro

}

4. Configure Users
FreeRADIUS supports many different user stores: Text Files, SQL Databases & Directories.
For Example:

Users file
Linux System Users
LDAP Server
PostgreSQL server
etc

In our example we will use Users file
Edit the file /etc/raddb/users and add the following lines in it

postgres Cleartext-Password := "postgres"
Reply-Message = "Hello, %{User-Name} Welcome"

7/68

Deep dive into PostgreSQL Authentication Methods

5. Check Configuration
radtest -x postgres postgres 127.0.0.1:1812 0 macbookpro postgresql

Sent Access-Request Id 9 from 0.0.0.0:41103 to 127.0.0.1:1812 length 84
User-Name = "postgres"
User-Password = "postgres"
NAS-IP-Address = 127.0.0.1
NAS-Port = 0
Message-Authenticator = 0x00
Framed-Protocol = PPP
Cleartext-Password = "postgres"

Received Access-Accept Id 9 from 127.0.0.1:1812 to 0.0.0.0:0 length 45
Reply-Message = "Hello, postgres Welcome"

6. Configure pg_hba.conf
 local all all radius radiusservers=127.0.0.1 radiussecrets=macbookpro radiusports=1812
 host all all 127.0.0.1/32 radius radiusservers=127.0.0.1 radiussecrets=macbookpro radiusports=1812
 host all all 0.0.0.0/0 radius radiusservers=127.0.0.1 radiussecrets=macbookpro radiusports=1812

7. Reload configuration
 pg_reload_conf();

8. Test authentication
./psql -p 6655 postgres -U postgres -h 127.0.0.1
Password for user postgres:
psql.bin (10.0.2)
Type "help" for help.

postgres=> \q

8/68

Enable debug output

User name

Password RADIUS server IP:Port

NAS Port

Secret NAS Name

Local : for unix domain sockets
Host : for TCP/IP connections
Hostssl : For TCP/IP with SSL

Hostnossl : For TCP/IP without SSL

User name

database Client IP Auth menthod

RADIUS Server IP

Shared secret RADIUS Server port

Deep dive into PostgreSQL Authentication Methods

9. Password Storing Methods in Users File:
FreeRADIUS supports the following methods of storing passwords in the Users file

Hash Type AVP name

1 Unix-style crypted password Crypt-Password

2 MD5 hashed password MD5-Password

3 MD5 hashed password with a salt SMD5-Password

4 SHA1 hashed password SHA-Password

5 SHA1 hashed password with a salt SSHA-Password

6 Windows NT hashed password NT-Password

7 Windows Lan Manager (LM) password LM-Password

Lets try MD5 hashed password for example:
9.1. Create a perl script with the following contents:

#! /usr/bin/perl -w
use strict;
use Digest::MD5;
use MIME::Base64;
unless($ARGV[0])
{

print "Argument is missing\n";
exit;

}
my $passwd = Digest::MD5->new;
$passwd->add($ARGV[0]);
print encode_base64($passwd->digest,'')."\n";

9.2. Save the script by the name md5hash.pl

9.3. chmod +x md5hash.pl

9.4. ./md5hash.pl postgres
6KSGU4UeKMadBQZQj7J/xQ==

9.5. Edit the file /etc/raddb/users
postgres MD5-Password := "6KSGU4UeKMadBQZQj7J/xQ=="

Reply-Message = "Hello, %{User-Name} Welcome"

9.6. Restart the FreeRADIUS server

9.7. Test authentication
./psql -p 6655 postgres -U postgres -h 127.0.0.1
Password for user postgres:

9/68

Deep dive into PostgreSQL Authentication Methods

psql.bin (10.0.2)
Type "help" for help.

postgres=> \q
9.8 Check the relevant content in the server log file

(1) Auth-Type PAP {
(1) pap: Login attempt with password
(1) pap: Comparing with "known-good" MD5-Password
(1) pap: User authenticated successfully
(1) [pap] = ok
(1) } # Auth-Type PAP = ok

For more information please consult this book:

FreeRADIUS Beginner's Guide
by Dirk Van Der Walt

10/68

Deep dive into PostgreSQL Authentication Methods

What is PAM
Any software system that needs to authenticate users has to choose what authentication methods the system is going
to support. Suppose that it was decided that the system will support authentication using the password file and the
software got released. At any latter time the format of the password file can be changed for example to include
passwords in MD5 format. Also any new authentication mechanism can get introduced after the software release and
organizations might want to adopt the new authentication system. In both the cases the software system will have to
be modified, recompiled and redistributed.
Instead software systems needing authentication should use a standard library. Each library providing support for
any standard authentication scheme should expose a standard set of interface functions that the software system can
invoke. In order to configure which authentication method or methods would the software system try all the user
should do is edit a configuration file.
This system is know as Pluggable Authentication Modules PAM. In PAM each library providing support for an
authentication method is called a module. PAM was developed in 1995 by Sun Microsystems and was standardized
in 1997 by Open Group. PAM is supported by all major operating systems for example Linux-PAM. In Linux-PAM
the program that uses PAM will make calls to the Linux-PAM library which will in turn invoke functions provided
by the PAM module.

A major advantage of this architecture is that on a single system different programs can use different authentication
schemes. Each program's configuration file will specify a different set of PAM modules to use.

The configuration file for some software systems can list more than one PAM modules to try, and each is tried in the
order listed. This list of modules to try for authentication is called a stack. If the user fails to authenticate using the
first PAM module which provides support for say /etc/passwd file, then PAM will try the next module listed, which
can attempt authentication using LDAP for example.

In case where the program specifies more than one PAM modules to try in the configuration file, the modules are
invoked one by one in the order listed in the stack. Each module can either return success or failure. There are many
possibilities that the program can opt for before declaring success or failure to the user. For example the program can
declare success to the user only when all the modules return success or when at least one of the modules declares
success. The results of all the modules have to be combined into a single result. This accumulation is controlled by a
flag provided for each module in the configuration file.
If a program's PAM configuration file is missing it uses a configuration file named “other”. This file should normally
deny all access.

11/68

To authenticate a
User invoke Standard
API calls provided
by Linux-PAM

 Application Linux PAM PAM Module 1 PAM Module 2

Check the application's PAM
configuration file and invoke
user authentication method of PAM1

Depending on the result of PAM1
And the value of control flag
Invoke user authentication method
Of PAM2, compute a final result and return

Deep dive into PostgreSQL Authentication Methods

PAM modules are generally stored in /lib64/security directory and all PAM module names start with pam_. All PAM
modules are shared objects i.e. so files. Modules can be put any where provided their absolute path is specified in the
PAM configuration file.

PAM modules can provide support for
Authentication using “auth” modules
Authorization using “account” modules
Session Management using “session” modules &
Password Management using “password” modules. Password modules implement policies for acceptable
passwords.

Control Flag Options
Sufficient

This control-flag means that if the module passes, that is enough and the remaining modules in the “auth” context
will be ignored. However, if the module fails, that doesn't mean an overall result of failure. If a subsequent
sufficient passes then the overall result will be success.

Required

This control-flag means that this modules must succeed before access is granted by PAM. If any required module
fails, the remaining required modules will be tried before declaring overall failure.

Requisite

This control-flag is the same as required flag, however when the module fails no further modules are tried.

Optional

This control-flag means that the success or failure of that module has no effect. It is used for session modules only.

12/68

Deep dive into PostgreSQL Authentication Methods

A sample PAM module pam_pg_auth

13/68

Authenticate
this
Username,
password
pair

 psql Main PostgreSQL Linux-PAM pam_pg_auth

pg_hba.conf instructs
PostgreSQL to use PAM
for authentication using
conf file named pg_auth.
PostgreSQL invokes
pam_start method of
Linux-PAM to let
Linux-PAM know name
of the PAM configuration
file used by PostgreSQL

 Authenticating
 PostgreSQL

The conf file pg_auth
describes complete
path of the PAM module
pam_pg_auth.
PostgreSQL invokes user
authentication method
of Linux-PAM i.e.
pam_authenticate

Knowing conf file
Name and PAM module
Path, Linux-PAM
Invokes user
Authentication
Method of
pam_pg_auth

pam_sm_authenticate
Connects to the
Authenticating
Server and
Returns the
result

Deep dive into PostgreSQL Authentication Methods

Simple PAM Module pam_pg_auth

/*
 * pam_pg_auth
 *
 * Authenticate a PG user by contacting another PG server
 * using the auth method specified in the argument
 */

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "libpq-fe.h"

/*
 * This is recommended in the module developer's guide
 */

#define PAM_SM_AUTH
#define PAM_SM_ACCOUNT
#define PAM_SM_SESSION
#define PAM_SM_PASSWORD

#include <security/pam_modules.h>
#include <security/_pam_macros.h>

#define DEFAULT_USER "nobody"
#define DEFAULT_LEN 1024
#define DEFAULT_LOG_FILE "/tmp/pam/pam_pg_auth.txt"
#define DEFAULT_CONF_FILE "/tmp/pg_auth.conf"

typedef enum
{
 TRUST = 0,
 SCRAM_SHA_256,
 MD5,
 PASSWORD,
 GSSAPI,
 IDENT,
 PEER,
 LDAP,
 RADIUS,
 CERTIFICATE
}pg_auth_type;

typedef struct
{
 char con_str[DEFAULT_LEN + 1];
}pg_auth_conf;

14/68

Deep dive into PostgreSQL Authentication Methods

int pam_parse_args(int argc, const char **argv);
int pam_parse_conf(void);
int connect_auth_server(void);

char log_file_name[DEFAULT_LEN + 1];
char auth_name[DEFAULT_LEN + 1];
int params_parsed = 0;
int conf_parsed = 0;
pg_auth_type auth_type = 0;
pg_auth_conf auth_conf;

/* connection_string=host=localhost port=8888 dbname=postgres connect_timeout=10 */
int pam_parse_conf()
{
 FILE *fp = NULL;
 char line[DEFAULT_LEN + 1];
 char key[DEFAULT_LEN + 1];
 char *sep;
 int key_len;
 int c = 0;
 char *cr;

 if (conf_parsed)
 return 0;

 conf_parsed = 1;

 memset(auth_conf.con_str, 0, DEFAULT_LEN + 1);

 fp = fopen(DEFAULT_CONF_FILE, "r");
 if (fp == NULL)
 return 0;

 while (1)
 {
 memset(line, 0, DEFAULT_LEN + 1);
 memset(key, 0, DEFAULT_LEN + 1);

 cr = fgets(line, DEFAULT_LEN, fp);
 if (cr == NULL)
 break;

 sep = strchr(line , '=');
 if (sep != NULL)
 {
 key_len = sep - line;
 sep = sep + 1; /* point sep to value */
 memcpy(key, line, key_len);
 }
 c++;
 if (strcmp(key, "connection_string") == 0)
 strcpy(auth_conf.con_str, sep);
 }

15/68

Deep dive into PostgreSQL Authentication Methods

 return c;
}

int pam_parse_args(int argc, const char **argv)
{
 int i;

 if (params_parsed)
 return 0;

 params_parsed = 1;

 strcpy(log_file_name, DEFAULT_LOG_FILE);
 auth_type = TRUST;

 for (i = 0; i < argc; i++)
 {
 if (!strncasecmp(argv[i],"log_file=", 9))
 {
 memset(log_file_name, 0, DEFAULT_LEN + 1);
 strcpy(log_file_name, (*argv) + 9);
 }
 if (!strncasecmp(argv[i],"auth_type=", 10))
 {
 memset(auth_name, 0, DEFAULT_LEN + 1);
 strcpy(auth_name, (*argv) + 10);

 if (strcmp(auth_name , "trust") == 0)
 auth_type = TRUST;
 else if (strcmp(auth_name , "scram-sha-256") == 0)
 auth_type = SCRAM_SHA_256;
 else if (strcmp(auth_name , "md5") == 0)
 auth_type = MD5;
 else if (strcmp(auth_name , "password") == 0)
 auth_type = PASSWORD;
 else if (strcmp(auth_name , "gssapi") == 0)
 auth_type = GSSAPI;
 else if (strcmp(auth_name , "ident") == 0)
 auth_type = IDENT;
 else if (strcmp(auth_name , "peer") == 0)
 auth_type = PEER;
 else if (strcmp(auth_name , "ldap") == 0)
 auth_type = LDAP;
 else if (strcmp(auth_name , "radius") == 0)
 auth_type = RADIUS;
 else if (strcmp(auth_name , "certificate") == 0)
 auth_type = CERTIFICATE;
 }
 }

 return argc;
}

16/68

Deep dive into PostgreSQL Authentication Methods

int connect_auth_server()
{
 PGconn *conn;
 FILE *fp;

 fp = fopen(log_file_name, "a+");

 switch (auth_type)
 {
 case TRUST:
 break;
 case SCRAM_SHA_256:
 break;
 case MD5:
 break;
 case PASSWORD:
 break;
 case GSSAPI:
 break;
 case IDENT:
 break;
 case PEER:
 break;
 case LDAP:
 break;
 case RADIUS:
 break;
 case CERTIFICATE:
 break;
 }

 conn = PQconnectdb(auth_conf.con_str);
 if (PQstatus(conn) != CONNECTION_OK)
 {
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Connection with auth server failed, reason [%d], [%s]",
 __FUNCTION__, __LINE__, PQstatus(conn), PQerrorMessage(conn));
 fflush(fp);
 }

 return 0;
 }
 PQfinish(conn);

 return 1;
}

17/68

Deep dive into PostgreSQL Authentication Methods

PAM_EXTERN int pam_sm_authenticate(pam_handle_t *pamh,int flags,int argcc,const char **argv)
{
 FILE *fp;
 int retval;
 const char *user=NULL;
 pam_parse_conf();
 pam_parse_args(argc, argv);
 fp = fopen(log_file_name, "a+");
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Passed parameters flags[%02X] argc[%d]", __FUNCTION__, __LINE__,
flags, argc);
 fflush(fp);
 }
 /*
 * authentication requires we know who the user wants to be
 */
 retval = pam_get_user(pamh, &user, NULL);
 if (retval != PAM_SUCCESS)
 {
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] pam_get_user falied with error[%s]", __FUNCTION__, __LINE__,
pam_strerror(pamh,retval));
 fflush(fp);
 }
 return PAM_CRED_INSUFFICIENT;
 }
 if (user == NULL || *user == '\0')
 {
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] empty username", __FUNCTION__, __LINE__);
 fflush(fp);
 }
 pam_set_item(pamh, PAM_USER, (const void *) DEFAULT_USER);
 return PAM_CRED_INSUFFICIENT;
 }
 else
 {
 pam_set_item(pamh, PAM_USER, (const void *) user);
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] username[%s]", __FUNCTION__, __LINE__, user);
 fflush(fp);
 }
 retval = connect_auth_server();
 if (retval != 1)
 return PAM_AUTH_ERR;

 return PAM_SUCCESS;
 }
 user = NULL;
 return PAM_SUCCESS;
}

18/68

Deep dive into PostgreSQL Authentication Methods

PAM_EXTERN int pam_sm_setcred(pam_handle_t *pamh,int flags,int argc ,const char **argv)
{
 FILE *fp;

 pam_parse_conf();
 pam_parse_args(argc, argv);

 fp = fopen(log_file_name, "a+");
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Passed parameters flags[%02X] argc[%d]", __FUNCTION__, __LINE__,
flags, argc);
 fflush(fp);
 }

 return PAM_SUCCESS;
}

/* --- account management functions --- */
PAM_EXTERN int pam_sm_acct_mgmt(pam_handle_t *pamh,int flags,int argc ,const char **argv)
{
 FILE *fp;

 pam_parse_conf();
 pam_parse_args(argc, argv);

 fp = fopen(log_file_name, "a+");
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Passed parameters flags[%02X] argc[%d]", __FUNCTION__, __LINE__,
flags, argc);
 fflush(fp);
 }

 return PAM_SUCCESS;
}

19/68

Deep dive into PostgreSQL Authentication Methods

/* --- password management --- */
PAM_EXTERN int pam_sm_chauthtok(pam_handle_t *pamh,int flags,int argc ,const char **argv)
{
 FILE *fp;

 pam_parse_conf();
 pam_parse_args(argc, argv);

 fp = fopen(log_file_name, "a+");
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Passed parameters flags[%02X] argc[%d]", __FUNCTION__, __LINE__,
flags, argc);
 fflush(fp);
 }

 return PAM_SUCCESS;
}

/* --- session management --- */
PAM_EXTERN int pam_sm_open_session(pam_handle_t *pamh,int flags,int argc ,const char **argv)
{
 int i;
 int retval;
 const char *user=NULL;
 FILE *fp;

 pam_parse_conf();
 pam_parse_args(argc, argv);

 fp = fopen(log_file_name, "a+");
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Passed parameters flags[%02X] argc[%d]", __FUNCTION__, __LINE__,
flags, argc);
 fflush(fp);
 }

 retval = pam_get_user(pamh, &user, NULL);
 if (retval != PAM_SUCCESS)
 {
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] pam_get_user falied with error[%s]", __FUNCTION__, __LINE__,
pam_strerror(pamh,retval));
 fflush(fp);
 }

 return PAM_USER_UNKNOWN;
 }

 if (user == NULL || *user == '\0')
 {
 if (fp != NULL)
 {

20/68

Deep dive into PostgreSQL Authentication Methods

 fprintf(fp, "\n[%s][%d] empty username", __FUNCTION__, __LINE__);
 fflush(fp);
 }
 return PAM_USER_UNKNOWN;
 }

 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] username[%s]", __FUNCTION__, __LINE__, user);
 fflush(fp);
 }

 for (i = 0; i < argc; i++)
 {
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Param #[%d] Param Value[%s]", __FUNCTION__, __LINE__, i,
argv[i]);
 fflush(fp);
 }
 }
 return PAM_SUCCESS;
}

PAM_EXTERN int pam_sm_close_session(pam_handle_t *pamh,int flags,int argc ,const char **argv)
{
 FILE *fp;

 pam_parse_conf();
 pam_parse_args(argc, argv);

 fp = fopen(log_file_name, "a+");
 if (fp != NULL)
 {
 fprintf(fp, "\n[%s][%d] Passed parameters flags[%02X] argc[%d]", __FUNCTION__, __LINE__,
flags, argc);
 fflush(fp);
 }

 return PAM_SUCCESS;
}

21/68

Deep dive into PostgreSQL Authentication Methods

Deploying the pam_pg_auth module
1. Build the .so file pam_pg_auth.so
2. In /etc/pam.d create a file called pg_auth containing
auth sufficient /home/abbas/pam_pg_auth/pam_pg_auth.so log_file=/tmp/pam_auth.txt auth_type=trust
account sufficient /home/abbas/pam_pg_auth/pam_pg_auth.so log_file=/tmp/pam_auth.txt auth_type=trust
password sufficient /home/abbas/pam_pg_auth/pam_pg_auth.so log_file=/tmp/pam_auth.txt auth_type=trust
session sufficient /home/abbas/pam_pg_auth/pam_pg_auth.so log_file=/tmp/pam_auth.txt auth_type=trust

3. Create the configuration file for the module
vim /tmp/pg_auth.conf

connection_string=host=localhost port=8888 dbname=postgres connect_timeout=10

4. Build PostgreSQL with PAM support

git clone git://git.postgresql.org/git/postgresql.git
git checkout REL_10_STABLE
sudo yum install readline*
sudo yum install zlib*
./configure --prefix=/usr/local/pg10_pam --with-pam --enable-debug CFLAGS="-
O0 -g"
make && make install

./configure --prefix=/usr/local/pg10_auth --enable-debug CFLAGS="-O0 -g"
make && make install

cd /usr/local/pg10_pam/bin/
./initdb -D ../data

cd /usr/local/pg10_auth/bin
./initdb -D ../data

5. Modify the pg_hba.conf file of the main PostgreSQL server (/usr/local/pg10_pam) as follows
local all all pam pamservice=pg_auth
host all all 127.0.0.1/32 pam pamservice=pg_auth
host all all ::1/128 pam pamservice=pg_auth

6. Modify the pg_hba.conf file of the authenticating PostgreSQL server (/usr/local/pg10_auth) as follows
local all all trust
host all all 127.0.0.1/32 trust
host all all ::1/128 trust

22/68

Deep dive into PostgreSQL Authentication Methods

7. Start both the servers

Main PostgreSQL server
./postgres -D ../data -p 9999 -d 2
Authenticating PostgreSQL server
./postgres -D ../data -p 8888 -d 2

8. Create the user in the Main Server
./createuser -d -l -P -r -s -h 127.0.0.1 -p 9999 harry
Password : test

9. Test PAM Authentication
 ./psql -h 127.0.0.1 -p 9999 -U harry postgres
psql (10.3)
Type "help" for help.

postgres=#

10. Check the PAM module's log file

cat /tmp/pam/pam_auth.txt

[pam_sm_authenticate][196] Passed parameters flags[00] argc[2]
[pam_sm_authenticate][229] username[harry]
[pam_sm_acct_mgmt][276] Passed parameters flags[00] argc[2]

Note that PostgreSQL does not use “session” or “password” functions of the PAM module.

23/68

Deep dive into PostgreSQL Authentication Methods

11. Check the Server log files
Main Server
2018-04-11 10:13:48.496 PKT [43754] LOG: connection received:
host=127.0.0.1 port=55458
2018-04-11 10:13:48.509 PKT [43754] LOG: connection authorized:
user=harry database=postgres

Authentication Server
2018-04-11 10:13:48.503 PKT [43755] LOG: connection received: host=::1
port=42294
2018-04-11 10:13:48.504 PKT [43755] LOG: connection authorized:
user=abbasbutt database=postgres

All sorts of combinations are possible with PAM, here user harry gets authenticated if authentication server can be
connected with default username.
Note : Work is under way to support other authentication methods in pam_pg_auth.

24/68

Deep dive into PostgreSQL Authentication Methods

Overview of IDENT protocol
Identification protocol is defined by RFC 1413. It provides an option to determine the identity of the user initiating a
particular TCP connection. Given a TCP source and destination port number pair, the IDENT server returns a
character string which identifies the owner of that connection on the IDENT server's system. PostgreSQL checks
whether this user is an allowed database user.

IDENT Server is supposed to be run on the client machine i.e. the machine where psql is running. The IP address of
the IDENT server is the same from where the psql connects with the PostgreSQL server. The TCP port is standard
113.

PostgreSQL sends Query to the IDENT server

39422,7777

where 39422 is the source TCP port used by psql while connecting with the PostgreSQL server
and 7777 is the destination TCP port used by psql while connecting with the PostgreSQL server
i.e the port on which PostgreSQL server is listening.

PostgreSQL asks the IDENT server:
What user initiated the connection that goes out of IDENT server's port 39422 and connects to port 7777 on my
machine?

The Server responds with

39422 , 7777 : USERID : Linux :abbasbutt

where 39422 is the port being used by psql client running on the IDENT server,
7777 is the port on IDENT's client i.e. PostgreSQL server.
Response Type is USERID meaning that the response is the name of operating system username
Linux is the name of the operating system, abbasbutt is the username.
Response could also be of the form

ERROR : NO-USER

PostgreSQL compares the username provided by IDENT server with the username provided by psql. If both are
equal then PostgreSQL checks whether the username provided is a valid database user or not.

25/68

Deep dive into PostgreSQL Authentication Methods

Installing and Configuring the IDENT server

Note that the server has to be installed on the machine where psql is running.

sudo yum install authd
sudo yum install xinetd

sudo vim /etc/xinetd.d/auth

service auth
{
 disable = no
 socket_type = stream
 wait = no
 user = ident
 cps = 4096 10
 instances = UNLIMITED
 server = /usr/sbin/in.authd
 server_args = -t60 --xerror --os
}

sudo service xinetd restart

Configuring & Testing PostgreSQL server

Modify the PostgreSQL server's pg_hba.conf as follows

local all all trust
host all all 127.0.0.1/32 ident
host all all ::1/128 ident

Run the server and test the configuration as follows:

./psql -h 127.0.0.1 -p 7777 -U abbasbutt postgres
psql (10.3)
Type "help" for help.

postgres=#

26/68

Deep dive into PostgreSQL Authentication Methods

Test the case when the username provided by IDENT server and psql are different

whoami
abbasbutt

./createuser -d -l -P -r -s -h 127.0.0.1 -p 7777 tom
Enter password for new role:
Enter it again:

./psql -h 127.0.0.1 -p 7777 -U tom postgres
psql: FATAL: Ident authentication failed for user "tom"

27/68

Deep dive into PostgreSQL Authentication Methods

Peer Authentication
Peer Authentication is supported for unix domain sockets only. It is not applicable to TCP/IP connections to the
server. This method works by obtaining the client's operating system user name from the kernel and using it as the
allowed database user name.

To configure the server to use Peer Authentication pg_hba.conf is modified as follows:

local all all peer
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

To configure the server to use Peer Authentication pg_hba.conf is modified as follows:

[abbasbutt@ublnetbanking bin]$ whoami
abbasbutt
[abbasbutt@ublnetbanking bin]$./psql -p 7777 -U abbasbutt postgres
psql (10.3)
Type "help" for help.

postgres=# \q
[abbasbutt@ublnetbanking bin]$./psql -p 7777 -U xyz postgres
psql: FATAL: Peer authentication failed for user "xyz"

28/68

Deep dive into PostgreSQL Authentication Methods

Trust Authentication
In trust authentication the server does not ask client for any password. Only the username is checked. The entries in
pg_hba_conf are as follows

local all all trust
host all all 127.0.0.1/32 trust
host all all ::1/128 trust

./psql -h 127.0.0.1 -p 7777 -U abbasbutt postgres
psql (10.3)
Type "help" for help.

postgres=#

The protocol is as follows:

29/68

 Start up Request
 User name, Database name, client encoding etc

Psql client PostgreSQL

Authentication Reply
52 00 00 00 08 00 00 00 00
Authentication Reply Length User authenticated

Status Parameters

 'S'|Length 4 bytes|Param Name | Param Value

Deep dive into PostgreSQL Authentication Methods

Start up Packet
0000 00 00 00 55 00 03 00 00 75 73 65 72 00 61 62 62 ...U....user.abb
0010 61 73 62 75 74 74 00 64 61 74 61 62 61 73 65 00 asbutt.database.
0020 70 6f 73 74 67 72 65 73 00 61 70 70 6c 69 63 61 postgres.applica
0030 74 69 6f 6e 5f 6e 61 6d 65 00 70 73 71 6c 00 63 tion_name.psql.c
0040 6c 69 65 6e 74 5f 65 6e 63 6f 64 69 6e 67 00 55 lient_encoding.U
0050 54 46 38 00 00 TF8..

[4] Length (85)
[4] Protocol Version (3.0)
Followed by null terminated strings of Param name and Param value pairs.

Authentication Reply & Status Parameters
0000 52 00 00 00 08 00 00 00 00 53 00 00 00 1a 61 70 R........S....ap
0010 70 6c 69 63 61 74 69 6f 6e 5f 6e 61 6d 65 00 70 plication_name.p
0020 73 71 6c 00 53 00 00 00 19 63 6c 69 65 6e 74 5f sql.S....client_
0030 65 6e 63 6f 64 69 6e 67 00 55 54 46 38 00 53 00 encoding.UTF8.S.
0040 00 00 17 44 61 74 65 53 74 79 6c 65 00 49 53 4f ...DateStyle.ISO
0050 2c 20 4d 44 59 00 53 00 00 00 19 69 6e 74 65 67 , MDY.S....integ
0060 65 72 5f 64 61 74 65 74 69 6d 65 73 00 6f 6e 00 er_datetimes.on.
0070 53 00 00 00 1b 49 6e 74 65 72 76 61 6c 53 74 79 S....IntervalSty
0080 6c 65 00 70 6f 73 74 67 72 65 73 00 53 00 00 00 le.postgres.S...
0090 14 69 73 5f 73 75 70 65 72 75 73 65 72 00 6f 6e .is_superuser.on
00a0 00 53 00 00 00 19 73 65 72 76 65 72 5f 65 6e 63 .S....server_enc
00b0 6f 64 69 6e 67 00 55 54 46 38 00 53 00 00 00 18 oding.UTF8.S....
00c0 73 65 72 76 65 72 5f 76 65 72 73 69 6f 6e 00 31 server_version.1
00d0 30 2e 33 00 53 00 00 00 24 73 65 73 73 69 6f 6e 0.3.S...$session
00e0 5f 61 75 74 68 6f 72 69 7a 61 74 69 6f 6e 00 61 _authorization.a
00f0 62 62 61 73 62 75 74 74 00 53 00 00 00 23 73 74 bbasbutt.S...#st
0100 61 6e 64 61 72 64 5f 63 6f 6e 66 6f 72 6d 69 6e andard_conformin
0110 67 5f 73 74 72 69 6e 67 73 00 6f 6e 00 53 00 00 g_strings.on.S..
0120 00 1a 54 69 6d 65 5a 6f 6e 65 00 41 73 69 61 2f ..TimeZone.Asia/
0130 4b 61 72 61 63 68 69 00 4b 00 00 00 0c 00 00 c7 Karachi.K.......
0140 0c 4b 79 a0 47 5a 00 00 00 05 49 .Ky.GZ....I

[1] Authentication Reply (0x52)
[4] Length (8)
[4] User Authenticated

Followed by Status Parameters in the format

30/68

 'S'|Length 4 bytes|Param Name | Param Value

Deep dive into PostgreSQL Authentication Methods

Password Authentication
In password authentication the server asks for password in clear text. The entries in pg_hba_conf are as follows
local all all trust
host all all 127.0.0.1/32 password
host all all ::1/128 password
Using trust authentication create a user first

./createuser -d -l -P -r -s -p 7777 admin
Enter password for new role: ad_min
Enter it again: ad_min

./psql -h 127.0.0.1 -p 7777 -U admin postgres
Password for user admin: ad_min
psql (10.3)
Type "help" for help .
postgres=#

The protocol is as follows:

31/68

 Start up Request
 What is server's authentication scheme?
 While we are asking this question please note
 User name, Database name, client encoding etc

Server is expecting password in clear text
52 00 00 00 08 00 00 00 03
Authentication Request Length Clear-text password

 Password response
 70 00 00 00 0b 61 64 5f 6d 69 6e 00
 Password response Length Password terminated by null

Psql client PostgreSQL

Authentication Reply
52 00 00 00 08 00 00 00 00
Authentication Reply Length User authenticated

Status Parameters

 'S'|Length 4 bytes|Param Name | Param Value

Deep dive into PostgreSQL Authentication Methods

MD5 Password Authentication
In md5 password authentication the server asks for password in md5 format. The entries in pg_hba_conf are as
follows
local all all trust
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
Using trust authentication create a user first

./createuser -d -l -P -r -s -p 7777 admin
Enter password for new role: ad_min
Enter it again: ad_min

./psql -h 127.0.0.1 -p 7777 -U admin postgres
Password for user admin: ad_min
psql (10.3)
Type "help" for help.
postgres=#

The protocol is as follows:

32/68

 Start up Request
 What is server's authentication scheme?
 While we are asking this question please note
 User name, Database name, client encoding etc

Server is expecting password in MD5 format
52 00 00 00 0c 00 00 00 05 4f e5 bc 42
Authentication Request Length md5 password salt generated by server

 Password response
 70 00 00 00 0b md5b094d71396249f3ca84a23b86d4ee7b9
 Password response Length MD5 Password terminated by null

 MD5 password is computed by md5(md5(password || username), salt)

Psql client PostgreSQL

Authentication Reply
52 00 00 00 08 00 00 00 00
Authentication Reply Length User authenticated

Status Parameters
 'S'|Length 4 bytes|Param Name | Param Value

Deep dive into PostgreSQL Authentication Methods

What is SASL & SCRAM-SHA-256
Simple Authentication and Security Layer (SASL) is specified in RFC 4422.

“The Simple Authentication and Security Layer (SASL) is a framework for providing authentication and data
security services in connection-oriented protocols via replaceable mechanisms.”

In SASL the client and server negotiate a common SASL mechanism that they will use for authentication. The server
provides a list of supported authentication mechanisms to the client. The client can decide which authentication
mechanism it is going to use. The authentication then takes place using the mechanism both client and server agree
to use. The client and server then keep exchanging authentication data encapsulated in SASL messages until the
authentication successfully completes, fails, or is aborted.

SCRAM-SHA-256 is one of the authentication mechanisms supported by SASL. Salted Challenge Response
Authentication Mechanism is specified by RFC 5802 & 7677. Secure Hashing Algorithm 256 always generates a
32 byte hash.

SCRAM Attributes
Each SCRAM attribute has a one letter name. The attributes used by PostgreSQL are described as follows:

n : username

r : random nonce

c : channel binding data

s : salt used by the server for the user being authenticated

i : iteration count

p : base-64 encoded Client's Proof

v : base-64 encoded Server's Proof

33/68

Deep dive into PostgreSQL Authentication Methods

SCRAM Authentication

34/68

 Start up Request
 User name, Database name, client encoding etc

List of Supported SASL Mechanisms
52 00 00 00 17 00 00 00 0a SCRAM-SHA-256
Authentication Request Length Begin SASL Auth Mechanism List

 Chosen Mechanism and Random Nonce
 70 00 00 00 36
 Password Response Length
 SCRAM-SHA-256 n,,n=, r=8bnsQo+Ple992is6aol5RGwx
 Chosen Mechanism Empty Username Random Nonce

Psql client PostgreSQL

 52 00 00 00 36 00 00 00 0c
 Authentication Request Length End SASL Auth
 v=bbMCiVHlDHPK8J+TUS5w/cmRFD5OAE14EWwlYr62aqk=
 Server's Proof of Possession of User's Password
 Client performs the same steps on same info and compares with Server's Proof

Status Parameters
 'S'|Length 4 bytes|Param Name | Param Value

52 00 00 00 5c 00 00 00 0b
Authentication Request Length Continue SASL Auth
r=8bnsQo+Ple992is6aol5RGwxrVfgJB7J1or00fFL4T2crJ6L,
Server's Nonce post-fixed with Client's Nonce
s=Brk5ZGyjbS0gXe9EsLIAAQ==,
Salt used by the server for the user being authenticated
i=4096
Iteration Count

 70 00 00 00 6c
 Password Response Length
 c=biws,
 Channel Binding is not supported
 r=8bnsQo+Ple992is6aol5RGwxrVfgJB7J1or00fFL4T2crJ6L,
 Nonce as received in last message
 p=n7ztD7URxuRQTOq8Q910dIVvDZthNF2aleUeVSmuLmE=
 Client's Proof of Possession of User's Password
 Server performs the same algo on user's password, salt etc
 and compares with the clients proof

Deep dive into PostgreSQL Authentication Methods

Introduction to Cryptography
Cryptographic algorithms can be classified into two main categories:

Symmetric Key Encryption & Public Key Encryption

Symmetric Key Encryption

Symmetric key algorithms encrypt and decrypt data using a single key.

The key in symmetric key algorithms must be kept secret. Exchanging key between the sender and the receiver can
be difficult. The same communication channel cannot be used and sending keys in clear is not a very good idea.
Security is related to the key length, the longer the better.

Popular symmetric key algorithms are Triple DES, AES. Triple DES uses 112 bit key, AES supports key lengths of
128 bit or more.

Public Key Encryption

Public Key Encryption uses two keys: one that must remain secret is the private key and the one that has to be
freely distributed is the public key. The public and the private key pair are related to each other in such a manner
that a message encrypted by the public key can be decrypted only by its private key pair. Hence there is no issue of
key distribution.

Public keys are distributed with a bunch of supporting information called a certificate. Certificates are validated by
trusted third parties called certification authority. A certification authority (CA) certifies that the owner of the
public key is the one who is the named subject of the certificate.

35/68

 Clear Text Cipher Text Encryption
 Algo

 Key

 Encryption
 Algo

 Key

 Clear Text

 Clear Text Cipher Text Encryption
 Algo

 Public
 Key

 Encryption
 Algo

 Clear Text

 Private
 Key

Deep dive into PostgreSQL Authentication Methods

Overview of SSL
The secure sockets layer sits in between the application and the transport layer in the OSI model.

36/68

 Physical Layer (wifi)

 Data link Layer (ethernet)

 Network Layer (IP)

 Transport Layer (TCP)

 Session Layer (SSL)

 Presentation Layer (none)

 Application Layer (libpq)

Deep dive into PostgreSQL Authentication Methods

Setting up SSL in PostgreSQL
Mostly steps are same as mentioned here

https://www.depesz.com/2015/05/11/how-to-setup-ssl-connections-and-authentication/

Check OpenSSL version

openssl version

OpenSSL 1.0.2k-fips 26 Jan 2017

Building PostgreSQL with SSL support

git clone git://git.postgresql.org/git/postgresql.git
git checkout REL_10_STABLE
sudo yum install readline*
sudo yum install zlib*
./configure --prefix=/usr/local/sslpg10 --with-openssl --enable-debug
CFLAGS="-O0 -g"
make && make install

37/68

Deep dive into PostgreSQL Authentication Methods

Setup OpenSSL

Make a directory named ca in the home directory
Make a copy of /etc/pki/tls/openssl.cnf in the ca directory
Change the following parameters

dir = /home/abbasbutt/ca
countryName_default = PK
stateOrProvinceName_default = Punjab
localityName_default = Wah
0.organizationName_default = EDB

Install the openssl-perl package
sudo yum install openssl-perl

Copy the /etc/pki/tls/misc/CA.pl in the ca directory

Create new CA

./CA.pl -newca

In response to
Enter PEM pass phrase:

Enter the pass phrase logitech

In response to
Common Name (eg, your name or your server's hostname) []:

Enter pg/ca

In response to
Email Address []:

Enter your email address

In response to
Enter pass phrase for /home/abbasbutt/ca/private/cakey.pem:

Enter the pass phrase logitech
Accept defaults for the rest

38/68

Deep dive into PostgreSQL Authentication Methods

Create public-private key pair for PostgreSQL Server

./CA.pl -newreq

In response to
Enter PEM pass phrase:

Enter the pass phrase logitech

In response to
Common Name (eg, your name or your server's hostname) []:

Enter pg/server

In response to
Email Address []:

Enter your email address

Accept defaults for the rest

./CA.pl -sign

In response to
Enter pass phrase for /home/abbasbutt/ca/private/cakey.pem:

Enter the pass phrase logitech

Rename the public private key pair and set the permissions
mv newcert.pem pg-server.crt
mv newkey.pem pg-server.key
chmod 0600 pg-server.key

Make changes in postgresql.conf and pg_hba.conf

In postgresql.conf
ssl = on
ssl_cert_file = '/home/abbasbutt/ca/pg-server.crt'
ssl_key_file = '/home/abbasbutt/ca/pg-server.key'
ssl_ca_file = '/home/abbasbutt/ca/cacert.pem'

In pg_hba.conf
local all all trust
hostssl all all 127.0.0.1/32 trust
hostssl all all ::1/128 trust
hostnossl all all 0.0.0.0/0 reject

39/68

Deep dive into PostgreSQL Authentication Methods

Test the setup

Start the server

./postgres -D ../data/ -p 6789

Enter PEM pass phrase:logitech

Connect using psql without authentication but with SSL

 ./psql -h 127.0.0.1 -p 6789 -U abbasbutt postgres

psql (10.3)

SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits:
256, compression: off)

Type "help" for help.

postgres=#

40/68

Deep dive into PostgreSQL Authentication Methods

Authenticating using certificates

Create public-private key pair for psql user
./CA.pl -newreq

Generating a 2048 bit RSA private key
................................+++
.................+++
writing new private key to 'newkey.pem'
Enter PEM pass phrase:pageup
Verifying - Enter PEM pass phrase:pageup

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [PK]:
State or Province Name (full name) [Punjab]:
Locality Name (eg, city) [Wah]:
Organization Name (eg, company) [EDB]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:pg/user/simba
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Request is in newreq.pem, private key is in newkey.pem

./CA.pl -sign
Using configuration from ./openssl.cnf
Enter pass phrase for /home/abbasbutt/ca/private/cakey.pem:logitech
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number:
 f3:94:69:41:67:a1:3c:d3
Validity
 Not Before: Apr 15 13:16:46 2018 GMT
 Not After : Apr 15 13:16:46 2019 GMT
Subject:
 countryName = PK
 stateOrProvinceName = Punjab
 localityName = Wah
 organizationName = EDB

41/68

Deep dive into PostgreSQL Authentication Methods

 commonName = pg/user/simba
X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 F4:44:00:D9:1B:5D:87:CC:B9:E6:27:72:34:D6:3F:77:D8:E1:F2:A9
 X509v3 Authority Key Identifier:
 keyid:5D:62:C7:A2:8A:16:7A:98:A0:81:10:2A:84:DB:2E:39:7E:AC:BD:72

Certificate is to be certified until Apr 15 13:16:46 2019 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem

Remove the password from the generated key
openssl rsa -in newkey.pem -out user-simba.key

Enter pass phrase for newkey.pem:pageup
writing RSA key

mv newcert.pem user-simba.crt
rm newreq.pem

Copy the public private key pair where psql looks for them
mkdir ~/.postgresql

cp user-simba.crt ~/.postgresql/postgresql.crt
cp user-simba.key ~/.postgresql/postgresql.key

chmod 0600 ~/.postgresql/postgresql.key

42/68

Deep dive into PostgreSQL Authentication Methods

Modify the pg_hba.conf

local all all trust
hostssl all all 127.0.0.1/32 cert map=abc
hostssl all all ::1/128 trust
hostnossl all all 0.0.0.0/0 reject

Modify the pg_ident.conf

Each entry in the pg_ident.conf file takes the form

MAPNAME SYSTEM-USERNAME PG-USERNAME

where
MAPNAME

is the name of the entry to refer to it in pg_hba.conf
SYSTEM-USERNAME

Detected user name of the client
PG-USERNAME

The PostgreSQL user to which SYSTEM-USERNAME should get mapped to

Each entry in this file tells the server that a user SYSTEM-USERNAME may connect as PG-USERNAME.

We need this because for us psql tries to connect as user simba whereas the cname in the certificate carries the
name pg/user/simba

We add the following line in the pg_ident.conf

abc pg/user/simba simba

Creatye the user using unix domain trust

./createuser -d -l -P -r -s -p 6789 simba
Enter password for new role: simba
Enter it again: simba

Test the authentication setup

export PGSSLCOMPRESSION=0
./psql -h 127.0.0.1 -p 6789 -U simba postgres
psql (10.3)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits:
256, compression: off)
Type "help" for help.

postgres=#

43/68

Deep dive into PostgreSQL Authentication Methods

SSL Client Side Parameters

libpq allows the following parameters to be set by clients while trying to connect to the PostgreSQL server

sslmode

disable only try a non-SSL connection

allow first try a non-SSL connection; if that fails, try an SSL connection

prefer (default) first try an SSL connection; if that fails, try a non-SSL connection

require only try an SSL connection

verify-ca only try an SSL connection, and verify that the server certificate is issued by a
trusted certificate authority (CA)

verify-full only try an SSL connection, verify that the server certificate is issued by a trusted
CA and that the requested server host name matches that in the certificate

sslcompression

 1 means data sent over SSL connections will be compressed. 0 means compression will be disabled.

sslcert

 This parameter specifies the file name of the client SSL certificate, replacing the default
~/.postgresql/postgresql.crt.

sslkey

 This parameter specifies the location for the secret key used for the client certificate, replacing the default
~/.postgresql/postgresql.key.

44/68

Deep dive into PostgreSQL Authentication Methods

The SSL Protocol

45/68

 Server responds with “Server Hello & Server's Certificate”
 Protocol Version, Server Random,
 Selected Cipher Suite:TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 Server Certificate containing the Server's Public Key
 Server requests client to send it's certificate

 Client Certificate,
 A pre-master key encrypted using server's public key
 Random bytes encrypted using client's private key

 Client Server

 Server informs client that the user has been authenticated

 SSL Handshake Starts with “Client Hello”
 Client Hello Contains the following attributes
 Protocol Version, A list of cipher suites supported
 by the client in order of preference, Client Random

 Negotiate SSL Request
 00 00 00 08 04 d2 16 2f
 Length SSL Code

Server can respond with either 'N','S' or 'E'
In our case server responds with 'S' meaning Yes

 Server decrypts the pre-master key using its private key – Server Authenticated
 Server decrypts random byte using clients public key – Client Authenticated
 Both server and client now perform a series of steps using pre-master key,
 Random bytes etc to generate a session key.
 Session key will be the symmetric key that will be used for encrypting/decrypting
 Data on the SSL channel

 Server extracts CN mentioned in the Subject of client's certificate pg/user/simba
 Server consults pg_ident.conf file and maps pg/user/simba to user simba

 Client final message encrypted using session key

 Server's final message encrypted using session key

Deep dive into PostgreSQL Authentication Methods

What is Kerberos
Kerberos is a Centralized Network Authentication System with the following features:

• Kerberos not only ensures that the person using the desktop is the who he claims to be, but also ensures that
the server he is communicating with is who it claims to be.

• Kerberos makes sure that the end users log in once to access all the services and network resources. This is
called single sign on.

• Kerberos uses a Kerberos password – the one passwords that the user has to remember to use the entire
network resources and services.

• Kerberos ensures that the passwords and other sensitive data is never sent over the network in clear text.

Kerberos Key Distribution Center (KDC)

Kerberos operates through a centralized Key Distribution Center (KDC). Each KDC consists of three logical
components:

• Kerberos Database
• Authentication Server
• Ticket Granting Server

Kerberos Realm

A Kerberos realm consists of a set of nodes that use the same Kerberos database.

Kerberos Principal

A Kerberos principal is a service or a user known to the Kerberos database.

A Kerberos 4 principal can take the following forms:
user[.instance]@REALM
service.hostname@REALM

A Kerberos 5 principal can the following forms:
username[/instance]@REALM
service/fully-qualified-domain-name@REALM

Kerberos Database

It contains all the principals of a Kerberos Realm along with their associated secrets.

46/68

mailto:service/fully-qualified-domain-name@REALM
mailto:service.hostname@REALM

Deep dive into PostgreSQL Authentication Methods

Kerberos Ticket
It is an encrypted data structure issued by the KDC to confirm the identity of the end participants and to establish a
session key. It contains the following information:

• The user's principal
• The service's principal
• Ticket Validity
• Ticket Expiry
• A list of IP addresses the ticket can be used from
• A shared secret encryption key – the session key

Ticket Granting Ticket
The authentication server issues an encrypted Ticket Granting Ticket (TGT) to the clients who want to login to the
Kerberos realm. This ticket can only be decrypted with the user's password. The user types in his password and the
login process tries to decrypt the TGT. The correct password will correctly decrypt the TGT, incorrect password will
decrypt the TGT into garbage. Once decrypted the user will have access to the session key.

Ticket Granting Server
Ticket Granting Server (TGS) issues individual service tickets to the clients as they request them. The clients sends
service's principal name and a TGT to the TGS. TGS verifies that the TGT is valid by checking that it has been
encrypted using the Authentication server's TGT key and then issues the service ticket.

47/68

Deep dive into PostgreSQL Authentication Methods

The Needham-Schroeder Protocol
Rodger Needham and Michael Schroeder published a paper in 1978 describing a framework for providing secure
network authentication system. Kerberos authentication is based on this paper.

48/68

 Authentication Server Client Application Server

 Client Username
 App Server name
 Random Nonce

 Encrypted By User's Public Key
 {
 User's copy of session key
 App Server Name
 Nonce from authentication request

 Encrypted By App Server's Public Key
 {
 App Server's copy of the session key
 Client Username
 }
 }

 Encrypted By App Server's Public Key
 {
 App Server's copy of the session key
 Client Username
 }

 Find private keys of Username & App Server

 Decrypt message by own private key
 and see if random nonce was recovered.
 If yes recover the part intended for App Server

Decrypt message by own private key and
Recover the session key

 Encrypted by Session Key
 {
 Random Nonce (N)
 }

 Encrypted By Session Key
 {
 N + 1
 }

 Decrypt message by own private key and
 Recover the session key

 App Server ensues that the client has the
 Session key, and that the first message
 That the client had sent was not a result of
 Replay attack.

Deep dive into PostgreSQL Authentication Methods

The General Security Services API (GSSAPI)
PostgreSQL uses GSSAPI as a means to provide Kerberos 5 support. GSSAPI provides an abstraction layer over a
particular platform, security mechanism, type of protection or transport protocol. In addition to Kerberos, GSSAPI
provides support for other security mechanisms too. GSSAPI shields complexities of libkrb5. GSSAPI v2 is
specified in RFC 2743, RFC 2744 & RFC 7546.

Kerberos Setup
The setup consists of network of three computers as follows:

49/68

 amir.pgcon.us
 192.168.2.106
 Kerberos Client
 PostgreSQL Server
 CentOS 7

 mac.pgcon.us
 192.168.2.116
 Kerberos Server
 CentOS 7

 ns1.pgcon.us
 192.168.2.104
 DNS Server
 Ubuntu 16.06

Deep dive into PostgreSQL Authentication Methods

Setting up the DNS Server
1. sudo apt-get install bind9 bind9utils

2. sudo vim /etc/bind/named.conf.options

3. sudo vim /etc/bind/named.conf.local

50/68

acl "trusted" {
 192.168.2.106;
 192.168.2.116;
 192.168.2.104;
 192.168.2.1;
};
options {
 directory "/var/cache/bind";
 recursion yes;
 allow-recursion { trusted; };
 listen-on { 192.168.2.104; };
 allow-transfer { none; };

forwarders {
8.8.8.8;

};
};

zone "pgcon.us" {
 type master;
 file "/etc/bind/zones/db.pgcon.us";
};

zone "2.168.192.in-addr.arpa" {
 type master;
 file "/etc/bind/zones/db.2.168.192";
};

Deep dive into PostgreSQL Authentication Methods

In the folder /etc/bind/zones create the following files

4. sudo vim db.2.168.192

5. sudo vim db.pgcon.us

51/68

$TTL 604800
@ IN SOA pgcon.us. admin.pgcon.us. (
 3 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
; name servers
 IN NS ns1.pgcon.us.

; PTR Records
104 IN PTR ns1.pgcon.us.
106 IN PTR amir.pgcon.us.
116 IN PTR mac.pgcon.us.

$TTL 604800
@ IN SOA ns1.pgcon.us. admin.pgcon.us. (
 3 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
; name servers - NS records
 IN NS ns1.pgcon.us.

; name servers - A records
ns1.pgcon.us. IN A 192.168.2.104

amir.pgcon.us. IN A 192.168.2.106
mac.pgcon.us. IN A 192.168.2.116

Deep dive into PostgreSQL Authentication Methods

6. Check configuration should not throw any error

abbas@abbas-Studio-1537:/etc/bind/zones$ sudo named-checkconf

abbas@abbas-Studio-1537:/etc/bind/zones$

7. sudo service bind9 restart

8. sudo service bind9 status

[sudo] password for abbas:

 bind9.service - BIND Domain Name Server●

 Loaded: loaded (/lib/systemd/system/bind9.service; enabled; vendor preset: enabled)

 Drop-In: /run/systemd/generator/bind9.service.d

 50-insserv.conf-$named.conf└─

 Active: active (running) since 12:15:26 13-04-2018جمعه PKT; 2h 53min ago

 Docs: man:named(8)

 Process: 24524 ExecStop=/usr/sbin/rndc stop (code=exited, status=0/SUCCESS)

 Main PID: 24532 (named)

 CGroup: /system.slice/bind9.service

 24532 /usr/sbin/named -f -4 -u bind└─

9. sudo named-checkzone pgcon.us db.pgcon.us

zone pgcon.us/IN: loaded serial 3

OK

10. sudo named-checkzone 2.168.192.in-addr.arpa /etc/bind/zones/db.2.168.192

zone 2.168.192.in-addr.arpa/IN: loaded serial 3

OK

52/68

Deep dive into PostgreSQL Authentication Methods

11. Test DNS Server from both Kerberos Client & Kerberos Server

nslookup ns1.pgcon.us

Server: 192.168.2.104

Address: 192.168.2.104#53

Name:ns1.pgcon.us

Address: 192.168.2.104

nslookup mac.pgcon.us

Server: 192.168.2.104

Address: 192.168.2.104#53

Name:mac.pgcon.us

Address: 192.168.2.116

nslookup amir.pgcon.us

Server: 192.168.2.104

Address: 192.168.2.104#53

Name:amir.pgcon.us

Address: 192.168.2.106

53/68

Deep dive into PostgreSQL Authentication Methods

Setting up the Kerberos Server
1. sudo yum install krb5-libs krb5-server krb5-workstation

2. sudo vim /etc/krb5.conf

3. sudo kdb5_util create -s

Loading random data

Initializing database '/var/kerberos/krb5kdc/principal' for realm 'PGCON.US',

master key name 'K/M@PGCON.US'

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key:

Re-enter KDC database master key to verify:

54/68

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = PGCON.US
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = yes
 default_tgs_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5
 default_tkt_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5
 permitted_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5

[realms]
 PGCON.US = {
 kdc = mac.pgcon.us:88
 admin_server = mac.pgcon.us:749
 default_domain = pgcon.us
 }

[domain_realm]
 .pgcon.us = PGCON.US
 pgcon.us = PGCON.US

Deep dive into PostgreSQL Authentication Methods

4. sudo kadmin.local -q "addprinc abbas/admin"

Authenticating as principal abbas/admin@PGCON.US with password.

WARNING: no policy specified for abbas/admin@PGCON.US; defaulting to no
policy

Enter password for principal "abbas/admin@PGCON.US":

Re-enter password for principal "abbas/admin@PGCON.US":

Principal "abbas/admin@PGCON.US" created.

5. sudo krb5kdc

6. sudo kadmin.local -q "addprinc postgres/amir.pgcon.us@PGCON.US"

Authenticating as principal abbas/admin@PGCON.US with password.

WARNING: no policy specified for postgres/amir.pgcon.us@PGCON.US;
defaulting to no policy

Enter password for principal "postgres/amir.pgcon.us@PGCON.US":

Re-enter password for principal "postgres/amir.pgcon.us@PGCON.US":

Principal "postgres/amir.pgcon.us@PGCON.US" created.

7. sudo kadmin.local -q "xst -k pgcon.us.keytab
postgres/amir.pgcon.us@PGCON.US"

Authenticating as principal abbas/admin@PGCON.US with password.

Entry for principal postgres/amir.pgcon.us@PGCON.US with kvno 2,
encryption type aes256-cts-hmac-sha1-96 added to keytab
WRFILE:pgcon.us.keytab.

Entry for principal postgres/amir.pgcon.us@PGCON.US with kvno 2,
encryption type aes128-cts-hmac-sha1-96 added to keytab
WRFILE:pgcon.us.keytab.

55/68

Deep dive into PostgreSQL Authentication Methods

Setting up the Kerberos Client
1. sudo vim /etc/krb5.conf

2. Copy pgcon.us.keytab from the Kerberos Server machine to the client
machine and sudo chown abbas:abbas pgcon.us.keytab

3. klist

klist: No credentials cache found (filename: /tmp/krb5cc_1000)

4. kinit -k -t pgcon.us.keytab postgres/amir.pgcon.us@PGCON.US

5. klist

Ticket cache: FILE:/tmp/krb5cc_1000

Default principal: postgres/amir.pgcon.us@PGCON.US

Valid starting Expires Service principal

04/13/2018 04:30:18 04/14/2018 04:30:18 krbtgt/PGCON.US@PGCON.US

56/68

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = PGCON.US
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = yes
 default_tgs_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5
 default_tkt_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5
 permitted_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5

[realms]
 PGCON.US = {
 kdc = mac.pgcon.us:88
 admin_server = mac.pgcon.us:749
 default_domain = pgcon.us
 }

[domain_realm]
 .pgcon.us = PGCON.US
 pgcon.us = PGCON.US

Deep dive into PostgreSQL Authentication Methods

Setting up the PostgreSQL Server for Kerberos
1. Build and install PostgreSQL Server

 git clone git://git.postgresql.org/git/postgresql.git

 git checkout REL_10_STABLE

 ./configure --prefix=/usr/local/pg10 –with-gssapi

 --enable-debug CFLAGS="-O0 -g"

 make && make install

2. Modify the pg_hba.conf

local all all trust

host all all 0.0.0.0/0 gss include_realm=1 krb_realm=PGCON.US

host all all ::1/128 trust

3. Modify postgresql.conf

krb_server_keyfile = '/home/abbas/pgcon.us.keytab'

4. Start the server

./postgres -D ../data -p 5678

5. Create user using trust authentication

./psql -U abbas -p 5678 postgres -c 'CREATE ROLE
"postgres/amir.pgcon.us@PGCON.US" SUPERUSER LOGIN'

6. ./psql -U postgres/amir.pgcon.us@PGCON.US -h amir.pgcon.us -p 5678 postgres

psql (10.3)

Type "help" for help.

postgres=#

57/68

Deep dive into PostgreSQL Authentication Methods

58/68

Deep dive into PostgreSQL Authentication Methods

59/68

Deep dive into PostgreSQL Authentication Methods

Common LDAP Terms
In the good old days there used to be a telephone directory containing a complete list of names and telephone
numbers of a certain region, company or a service provider. Using this directory it was possible to find the telephone
number of a friend.
With the advent of computers there is no end of information that needs organizing. Even DOS had a directory. In
computers directories provide an efficient way of managing information so that its easy to find the required
information. Each directory has a list of entries. Each entry has a list of attribute value pairs. A container is a
special type of entry which helps organize other entries by a parent/child relationship. A commonly used container
object class is OU, Organizational Unit. Person entries in a directory can go to container People, while product
entries can be contained in container Products.
Containers can have other containers as children, but child entries can have only a single container as a parent
allowing only a pyramid (hierarchical) organizational structure.
Each entry in a directory has a unique name know as distinguished name DN.
Each entry also has a name local to its immediate container known as the relative distinguished name (RDN).
Each directory has a root. The name of the root of the directory is directory's base DN. The base DN typically is
same as the server's domain name.
Schema provides the set of rules that define what type of entries can be in a directory. Schema acts as a packaging
unit.
Object classes provide a grouping for sets of attributes. Object classes are defined with in schemas.
Commonly used object classes are as follows:

c countryName

cn commonName

dc domainComponent

co friendlyCountryName

gn givenName

homePhone homeTelephoneNumber

l localityName

mobile mobileTelephoneNumber

o organizationName

ou organisationalUnitName

postalCode postalCode

sn surname

st stateOrProvinceName

street streetAddress

uid userid

60/68

Deep dive into PostgreSQL Authentication Methods

What is LDAP
LDAP stands for Lightweight directory access protocol. LDAP version 3 is defined by a set of nine RFCs: 2251-
2256, 2829, 2830 & 3377. LDAP defines a set of server operations used to manipulate information stored by the
directory. The operations are add, modify, delete, search, compare, bind etc. LDAP uses TCP/IP port 389 for
communication between the LDAP server and the LDAP client.

The bind operation is used to authenticate clients using the username password pair provided.

LDAP server is provided by many popular vendors, we are however going to use 389-DS.

LDAP Authentication in PostgreSQL
PostgreSQL supports LDAP authentication in two modes: simple bind mode & search + bind mode.

Simple Bind Mode:

In simple bind mode distinguished name is constructed as prefix username suffix. PostreSQL binds with the directory
server using this DN and client provided password to do the authentication.

Search + Bind Mode:

This is a multi step process:
• Bind with the directory server using ldapbinddn and ldapbindpasswd.
• Search for the user provided by the client in the sub-tree starting at ldapbasedn, trying to do an exact match

of the attribute specified in ldapsearchattribute.
• If the user provided by client is found, rebind to the directory server using the client provided username and

password to authenticate.

We are using Simple Bind Mode in our example.

61/68

Deep dive into PostgreSQL Authentication Methods

Overview of LDAP protocol

62/68

 Negotiate SSL Request
 00 00 00 08 04 d2 16 2f
 Length SSL Code

Server can respond with either 'N','S' or 'E'
In our case server responds with 'N' meaning No

 Start up Request
 What is server's authentication scheme?
 While we are asking this question please note
 User name, Database name, client encoding etc

00 00 00 58 00 03 00 00 75 73 65 72 00 70 6f 73 ...X....user.pos
74 67 72 65 73 00 64 61 74 61 62 61 73 65 00 70 tgres.database.p
6f 73 74 67 72 65 73 00 61 70 70 6c 69 63 61 74 ostgres.applicat
69 6f 6e 5f 6e 61 6d 65 00 70 73 71 6c 2e 62 69 ion_name.psql.bi
6e 00 63 6c 69 65 6e 74 5f 65 6e 63 6f 64 69 6e n.client_encodin
67 00 55 54 46 38 00 00 g.UTF8..

Server is expecting password in clear text
52 00 00 00 08 00 00 00 03
Authentication Request Length Clear-text password

 Password response
 70 00 00 00 0b 61 64 5f 6d 69 6e 00
 Password response Length Password terminated by null

Psql client PostgreSQL LDAP Server

 Bind Request Simple

 Bind Response Success

Authentication Reply
52 00 00 00 08 00 00 00 00
Authentication Request Length User authenticated

Status Parameters
 'S'|Length 4 bytes|Param Name | Param Value

Deep dive into PostgreSQL Authentication Methods

LDAP Bind Request

30 52 02 01 01 60 4d 02 01 03 04 40 75 69 64 3d 0R...`M....@uid=
61 64 6d 69 6e 2c 6f 75 3d 41 64 6d 69 6e 69 73 admin,ou=Adminis
74 72 61 74 6f 72 73 2c 6f 75 3d 54 6f 70 6f 6c trators,ou=Topol
6f 67 79 4d 61 6e 61 67 65 6d 65 6e 74 2c 6f 3d ogyManagement,o=
4e 65 74 73 63 61 70 65 52 6f 6f 74 80 06 61 64 NetscapeRoot..ad
5f 6d 69 6e _min

[1] LDAP Tag Sequence (0x30)
[1] Sequence Length (82)
[1] LDAP Tag Integer (2)
[1] Integer Length (1)
[1] Message ID (1)
[1] Bind Request (0x60)
[1] Length (77 bytes)
[1] LDAP Tag Integer (2)
[1] Integer Length (1)
[1] LDAP Version (3)
[1] LDAP distinguished name (0x04)
[1] length (64)
[64] Value (uid=admin,ou=Administrators,ou=TopologyManagement,o=NetscapeRoot)

[1] LDAP Auth Simple (0x80)
[1] length (6)
[6] Value (ad_min)

LDAP Bind Response

30 0c 02 01 01 61 07 0a 01 00 04 00 04 00 0....a.....…

[1] LDAP Tag Sequence (0x30)
[1] Sequence Length (12)
[1] LDAP Tag Integer (2)
[1] Integer Length (1)
[1] Message ID (1)
[1] Bind Response (0x61)
[1] Length (7)
[1] LDAP Tag Enum (0x0a)
[1] Enum Length (1)
[1] Bind Result 0x00:Success 0x31:Invalid Credentials

63/68

Deep dive into PostgreSQL Authentication Methods

LDAP Configuration Steps
Installing 389-DS

sudo yum install epel-release
sudo yum install 389-ds-base openldap-clients idm-console-framework 389-adminutil 389-admin

Configuring 389-DS

sudo setup-ds-admin.pl
[sudo] password for abbas:

==
This program will set up the 389 Directory and Administration Servers.

It is recommended that you have "root" privilege to set up the software.
Tips for using this program:
 - Press "Enter" to choose the default and go to the next screen
 - Type "Control-B" then "Enter" to go back to the previous screen
 - Type "Control-C" to cancel the setup program

Would you like to continue with set up? [yes]:

==
Your system has been scanned for potential problems, missing patches,
etc. The following output is a report of the items found that need to
be addressed before running this software in a production
environment.

389 Directory Server system tuning analysis version 14-JULY-2016.

NOTICE : System is x86_64-unknown-linux3.10.0-693.el7.x86_64 (2 processors).

NOTICE : The net.ipv4.tcp_keepalive_time is set to 7200000 milliseconds
(120 minutes). This may cause temporary server congestion from lost
client connections.

WARNING: There are only 1024 file descriptors (soft limit) available, which
limit the number of simultaneous connections.

WARNING : The warning messages above should be reviewed before proceeding.

Would you like to continue? [no]: yes

==
Choose a setup type:

 1. Express
 Allows you to quickly set up the servers using the most
 common options and pre-defined defaults. Useful for quick
 evaluation of the products.

64/68

Deep dive into PostgreSQL Authentication Methods

 2. Typical
 Allows you to specify common defaults and options.

 3. Custom
 Allows you to specify more advanced options. This is
 recommended for experienced server administrators only.

To accept the default shown in brackets, press the Enter key.

Choose a setup type [2]: 2

==
Enter the fully qualified domain name of the computer
on which you're setting up server software. Using the form
<hostname>.<domainname>
Example: eros.example.com.

To accept the default shown in brackets, press the Enter key.

Warning: This step may take a few minutes if your DNS servers
can not be reached or if DNS is not configured correctly. If
you would rather not wait, hit Ctrl-C and run this program again
with the following command line option to specify the hostname:

 General.FullMachineName=your.hostname.domain.name

Computer name [localhost.localdomain]:

==
The servers must run as a specific user in a specific group.
It is strongly recommended that this user should have no privileges
on the computer (i.e. a non-root user). The setup procedure
will give this user/group some permissions in specific paths/files
to perform server-specific operations.

If you have not yet created a user and group for the servers,
create this user and group using your native operating
system utilities.

System User [dirsrv]: ldapadmin
System Group [dirsrv]: ldapadmin

==
Server information is stored in the configuration directory server.
This information is used by the console and administration server to
configure and manage your servers. If you have already set up a
configuration directory server, you should register any servers you
set up or create with the configuration server. To do so, the
following information about the configuration server is required: the
fully qualified host name of the form
<hostname>.<domainname>(e.g. hostname.example.com), the port number
(default 389), the suffix, the DN and password of a user having
permission to write the configuration information, usually the
configuration directory administrator, and if you are using security
(TLS/SSL). If you are using TLS/SSL, specify the TLS/SSL (LDAPS) port

65/68

Deep dive into PostgreSQL Authentication Methods

number (default 636) instead of the regular LDAP port number, and
provide the CA certificate (in PEM/ASCII format).

If you do not yet have a configuration directory server, enter 'No' to
be prompted to set up one.

Do you want to register this software with an existing
configuration directory server? [no]:

==
Please enter the administrator ID for the configuration directory
server. This is the ID typically used to log in to the console. You
will also be prompted for the password.

Configuration directory server
administrator ID [admin]: admin
Password: ad_min
Password (confirm): ad_min

==
The information stored in the configuration directory server can be
separated into different Administration Domains. If you are managing
multiple software releases at the same time, or managing information
about multiple domains, you may use the Administration Domain to keep
them separate.

If you are not using administrative domains, press Enter to select the
default. Otherwise, enter some descriptive, unique name for the
administration domain, such as the name of the organization
responsible for managing the domain.

Administration Domain [localdomain]:

==
The standard directory server network port number is 389. However, if
you are not logged as the superuser, or port 389 is in use, the
default value will be a random unused port number greater than 1024.
If you want to use port 389, make sure that you are logged in as the
superuser, that port 389 is not in use.

Directory server network port [389]:

==
Each instance of a directory server requires a unique identifier.
This identifier is used to name the various
instance specific files and directories in the file system,
as well as for other uses as a server instance identifier.

Directory server identifier [localhost]:

==
The suffix is the root of your directory tree. The suffix must be a valid DN.
It is recommended that you use the dc=domaincomponent suffix convention.
For example, if your domain is example.com,
you should use dc=example,dc=com for your suffix.

66/68

Deep dive into PostgreSQL Authentication Methods

Setup will create this initial suffix for you,
but you may have more than one suffix.
Use the directory server utilities to create additional suffixes.

Suffix [dc=localdomain]:

==
Certain directory server operations require an administrative user.
This user is referred to as the Directory Manager and typically has a
bind Distinguished Name (DN) of cn=Directory Manager.
You will also be prompted for the password for this user. The password must
be at least 8 characters long, and contain no spaces.
Press Control-B or type the word "back", then Enter to back up and start over.

Directory Manager DN [cn=Directory Manager]:
Password:
Password (confirm):

==
The Administration Server is separate from any of your web or application
servers since it listens to a different port and access to it is
restricted.

Pick a port number between 1024 and 65535 to run your Administration
Server on. You should NOT use a port number which you plan to
run a web or application server on, rather, select a number which you
will remember and which will not be used for anything else.

Administration port [9830]:

==
The interactive phase is complete. The script will now set up your
servers. Enter No or go Back if you want to change something.

Are you ready to set up your servers? [yes]:
Creating directory server . . .
Your new DS instance 'localhost' was successfully created.
Creating the configuration directory server . . .
Beginning Admin Server creation . . .
Creating Admin Server files and directories . . .
Updating adm.conf . . .
Updating admpw . . .
Registering admin server with the configuration directory server . . .
Updating adm.conf with information from configuration directory server . . .
Updating the configuration for the httpd engine . . .
Starting admin server . . .
The admin server was successfully started.
Admin server was successfully created, configured, and started.
Exiting . . .
Log file is '/tmp/setupdt8sC5.log'

67/68

Deep dive into PostgreSQL Authentication Methods

Testing 389-DS

Check the /etc/dirsrv/admin-serv/adm.conf file for the user created by the configuration script.

ldapwhoami -vvv -h 192.168.115.219 -D
"uid=admin,ou=Administrators,ou=TopologyManagement,o=NetscapeRoot" -x -w
ad_min
ldap_initialize(ldap://192.168.115.219)
dn: uid=admin,ou=administrators,ou=topologymanagement,o=netscaperoot
Result: Success (0)

Building PostgreSQL with LDAP support

git clone git://git.postgresql.org/git/postgresql.git
git checkout REL_10_STABLE
sudo yum install readline*
sudo yum install zlib*
sudo yum install openldap-devel*
./configure --prefix=/usr/local/pg10 --with-ldap --enable-debug CFLAGS="-O0
-g"
make && make install

Configure pg_hba.conf
local all all trust
host all all 127.0.0.1/32 ldap ldapserver=192.168.115.216 ldapprefix="uid="
ldapsuffix=",ou=Administrators,ou=TopologyManagement,o=NetscapeRoot"
host all all ::1/128 ldap ldapserver=192.168.115.216 ldapprefix="uid="
ldapsuffix=",ou=Administrators,ou=TopologyManagement,o=NetscapeRoot"

Test LDAP support

cd /usr/local/pg10/bin
./initdb -D ../data
./postgres -D ../data -p 6543

Create the user to test
./createuser -d -l -P -r -s -h 127.0.0.1 -p 6543 admin
Give password test,it will not be used any way

./psql -h 127.0.0.1 -p 6543 -U admin postgres
Password for user admin: ad_min
psql (10.3)
Type "help" for help.

postgres=#

68/68

	Sufficient
	Required
	Requisite
	Optional
	4. Build PostgreSQL with PAM support
	Start up Packet
	Authentication Reply & Status Parameters
	Symmetric Key Encryption
	Public Key Encryption
	Check OpenSSL version
	Building PostgreSQL with SSL support
	Setup OpenSSL
	Create new CA
	Create public-private key pair for PostgreSQL Server
	Make changes in postgresql.conf and pg_hba.conf
	Test the setup
	sslmode
	sslcompression
	sslcert
	sslkey
	Kerberos Key Distribution Center (KDC)
	Kerberos Realm
	Kerberos Principal
	Kerberos Database
	Simple Bind Mode:
	Search + Bind Mode:
	LDAP Bind Request
	LDAP Bind Response
	Installing 389-DS
	Configuring 389-DS
	Testing 389-DS
	Building PostgreSQL with LDAP support
	Test LDAP support

