
POSTGRESQL MONITORING
INSIDE MAP-MAKING PLATFORM

PostgresConf 2018

Agenda

2

1. About us

2. TomTom what do we do?

3. Why monitoring is important?

4. Who should monitor?

5. What should we monitor?

6. Metrics & Tools

7. What changes when hundreds of databases have to be monitored?

8. Conclusion

About Us

3

michal.gutkowski@tomtom.com

Software engineer solving

problems with Java, Python,

Bash... and SQL

rafal.hawrylak@tomtom.com

Software developer and

database expert

About Us

4

We are from Lodz, Poland!

TomTom location services

5

NavigationMobile Usage

Drive Range Calculation Internet of Things

Ride Planning

Autonomous Driving

TomTom location content

6

ROAD NETWORK ROUTING

ADDRESSING GEOCODING

TRAFFIC SIGNS NAVIGATION

POI SEARCH

VISUALIZATION3D

ADAS DRIVER ASSISTANCE

HD & ROADDNA AUTOMATED DRIVING

7

• Transactional and versioned changes

• Database with spatial functions

• Massive automated tools editing map

• Manual editors working in parallel

• Real-time quality checks

• Billions of map objects

TomTom map-making platform

Map-making platform in 2018

8

• PostgreSQL + Postgis

• 100+ database machines in AWS

• Sharding and scalable reads

• 150TB of data

• Daily db size increase: 400GB up to 15k rows / sec

• Daily db transfers: 200TB up to 500k queries / sec

Why monitoring is important?

9

• System health-check and maintenance

• Alerting and reliable notification system

• Detect performance regression

• Measure optimizations software and business process

• Best value for money maximum utilization

• Adjust business processes self healing system

10

Why monitoring is important?

Metrics

Get value

Is it range?

Throttle down

Yes

Throttle up

Success!

CPU

Replication lag

Error rate

11

Why monitoring is important?

12

Why monitoring is important?

Who should monitor?

13

• Production monitoring

• Database team

• Every developer and tester

• Top-down responsibility: teams are responsible for delivering changes

in software, databases and monitoring

What should we monitor?

14

• Collect both business and low level metrics (Kibana, Prometheus, Munin)

• Alerting should be built on top of business metrics

• Low level metrics should be used for root cause analysis and warnings

Throughput Success rate

Queries Operational systemStorage Replication

Alerting

15

• Define rules and thresholds for metrics

• Remember only business metrics for alerting!

• Use automated notification (e-mails, Slack or PagerDuty)

• Example business metrics:

• Health check:

• Success rate

• Performance

• Application response times

• Requests per second

16

Metrics & Tools

Monitoring: which metrics are important

17

Queries

• Connections
• Active queries
• Query statistics
• Locks

Storage

• Statistics of tables and indexes
• Objects size
• Vacuum processes
• Bloat
• bg writer and checkpoints

Replication

• Replication tree
• Lag on standby

OS stats

• CPU
• Disk IO
• Memory
• Network

ERRORS

Monitoring: postgresql internals

18

Monitoring: errors

19

Why?

• Data corruption

• Database was shutdown

• Database not being able to start up

• Data not accessible

• Wrong user priviliges

• Full disk

How?

• zgrep i fatal /var/log/db/postgresql-* | less

• /var/log/messages

Monitoring: connections and queries

20

Why?

• indicate problems in higher tiers

• changes in usage pattern

• queries requiring optimization

• resource usage

• timeouts

How?

• SELECT usename, count(1) FROM pg_stat_activity

• pg_view or pg_activity or pgcenter

• munin

• pg_stat_statements

• postgres logs

Monitoring: pg_view

21

https://github.com/zalando/pg_view

Monitoring: pg_activity

22

https://github.com/julmon/pg_activity

Monitoring: locks

23

Why?

• Verify if some offline processes do not

block applications (operations

freezing big chunks of data like whole

tables)

• Verify if some application processes

do not block other applications

processes

• Deadlocks

How?

• SELECT * FROM pg_locks WHERE granted = false;

• munin

• pg_view, pg_activity

• postgres logs (for deadlocks)

Monitoring: objects size

24

Why?

• Control diskspace

• Know the largest objects, control increase

• Changes in usage pattern of application

layer (tuples count, average tuple size)

How?

• Munin to catch trend

• pg_total_relation_size(relid) table + indexes size

• pg_relation_size(relid) tables or index size

• pgstattuple(regclass) for precise results

• pgstatindex(regclass) for precise results

• SELECT reltuples AS approximate_row_count FROM

pg_class WHERE relname = 'tbl';

Monitoring: statistics of tables and indexes

25

Why?

• Changes in usage pattern of application layer

• Types of search (need for indexes)

• Number of inserted, updated, deleted tuples

• Analyze and vacuum info

• Types of search (not used indexes may be dropped)

How?

• pg_stat_user_tables

• pg_stat_user_indexes

Monitoring: vacuum process

26

Why?

• vacuum effectiveness

• resources utilization

How?

• pg_stat_progres_vacuum (PG10)

• pg_view

• htop

• iotop

• postgres logs (log_autovacuum_min_duration)

Monitoring: bloat

27

Why?

• uneffective space usage

• slower reads and writes

How?

• pg_stats (estimated) implemented also in check_postgres scripts

• pgstattuple extension (exact, but slow query) - includes pgstatindex

• pgstattuple_approx (quite exact, quite fast)

Monitoring: bg writer and checkpoints

28

Why?

• Influence on write performance

How?

• pg_stat_bgwriter

Why?

• Usability of standbys in terms of fresh data

• Are standbys in sync?

• Resources used by replication (network, cpu, disk utilization)

How?

• Primary: pg_stat_replication

• Standby: SELECT

now() - pg_last_xact_replay_timestamp();

Monitoring: replication lag

29

Monitoring at system level: cpu / disk io / memory / network

30

Why?

• most consuming processes

• learn your 100%

• usual consumption

• find bottlenecks and areas to optimize

How?

• cpu: top, htop, munin, pg_stat_statements

• disk io: iotop, munin, pg_stat_statements

• memory: htop, munin

• network: netstat, munin

What changes when hundreds of databases are to be monitored?

31

• Versioned PostgreSQL configuration - Git

• Automated configuration management Ansible/Puppet

• OS settings

• Defines which collectors / agents / plugins need to be installed

• Includes into monitoring (dashboards)

• Automated deployment and replication Jenkins

• Automated backups

What changes when hundreds of databases are to be monitored?

32

Amounts of logs collected

• 12 billions searchable events

(2% of total events, 200-400M events daily)

• 30 days retention for 95% of the events

What changes when hundreds of databases are to be monitored?

33

Metrics collectors

• Prometheus + exporter plugins

• Munin + plugins

• AppDynamics & Java agents

• custom collectors (queries statistics)

Metrics aggregators

• Elastic Search

• AppDynamics

Visualization

• Kibana, Graphana

• AppDynamics

• Munin

What changes when hundreds of databases are to be monitored?

34

Prometheus + Grafana

• Prometheus for pulling and storing metrics

• Ready-to-use exporters for OS and database metrics

• Allows creating custom exporters

• Grafana for visualization of different datasources

What changes when hundreds of databases are to be monitored?

35

What changes when hundreds of databases are to be monitored?

36

• Prometheus + Graphana

• Prometheus for collecting metrics

• Grafana for visualization and alerting

• Custom collectors + Elastic Search + Kibana

• ElasticSearch for collecting metrics

• Kibana for Visualization

• Munin

• Built-in and plugin collectors

• Does not automatically aggregate metrics into single chart

• Appdynamics https://prometheus.io/

https://grafana.com/

https://www.elastic.co/products/kibana

http://munin-monitoring.org/

Monitoring: Multiple database instances vs pg_stat_statements

37

• Gathers a bunch of useful statistics of query execution

• The best way to track lots of short queries

• One cumulative sack

• Not usable if you need track query behavior changes

collect from

observed db

Store in

collector

Reset on

observed db

Export to

logstash

Data available in

Kibana

Repeat every hour

Monitoring: pg_stat_statements in Kibana

38

Dashboard:

• total / avg execution time

• total / avg CPU execution time

• total / avg IO execution time

• total / avg number of calls

• total / avg number of rows returned / affected

Conclusion

39

• PostgreSQL is great database capable of reaching big goals

• It is scalable and provides good monitoring tools

But it is not enough:

• Needs constant monitoring (metrics collection)

• For many instances:

• It needs aggregated overview on metrics

• Alerting on top of business metrics not on low level instance metrics

During this presentation

40

• db size increased by 12,5GB, 40,5M rows

• generated WALs: 6k of total size 94GB

• all those WALs were streamed to 6 standbys

• db transfered (in/out): 6TB

• queries run: 1,08 bilion

41

TomTom data via API:

https://developer.tomtom.com

https://developer.tomtom.com/

Questions?

42

We are hiring! https://tomtom.com/careers/

https://developer.tomtom.com/

