
@LukasFittl

Monitoring
PostgreSQL

At Scale

@LukasFittl

@LukasFittl

pganalyze

@LukasFittl

Statistics That Matter

Two Tables To Remember

Breaking Down High-Level Statistics

Log Events Worth Knowing

Fingerprinting & Tracing Queries

@LukasFittl

Statistics That Matter

Two Tables To Remember

Breaking Down High-Level Statistics

Log Events Worth Knowing

Fingerprinting & Tracing Queries

@LukasFittl

Postgres Statistics
Tables

@LukasFittl

1 “Block” = 8 kB

(usually, check block_size to confirm)

@LukasFittl

Tuple = Row

@LukasFittl

Statistics Are Often Counters

* except when reset / overrun

Counts only go up*, 
calculate diffs!

@LukasFittl

Schema Statistics

@LukasFittl

pg_stat_user_tables
 relname: name of the table
 seq_scan: # of sequential scans
 idx_scan: # of index scans
n_tup_(ins/del/upd): # of rows modified
 n_live_tup: live rows
 n_dead_tup: dead rows
 last_(auto)vacuum: last VACUUM
 last_(auto)analyze: last ANALYZE
 …

@LukasFittl

SELECT relname, n_live_tup, seq_scan + idx_scan,
 100 * idx_scan / (seq_scan + idx_scan)
 FROM pg_stat_user_tables
 ORDER BY n_live_tup DESC

Index Hit Rate

Target: >= 95% on large, active tables

@LukasFittl

pg_statio_user_tables
 relname: name of the table
 heap_blks_read: blocks from disk / OS cache
 heap_blks_hit: blocks from buffer cache
 idx_blks_read: index blks from disk
 idx_blks_hit: index blks from buffer cache

 …

@LukasFittl

SELECT sum(heap_blks_hit) /
 nullif(sum(heap_blks_hit + heap_blks_read),0)
 FROM pg_statio_user_tables

Table Cache Hit Rate

Target: >= 99%

@LukasFittl

Query Workload

@LukasFittl

pg_stat_activity
 pid: process ID
 backend_type: “client backend”
 vs internal processes
 state: idle/active/idle in transaction
 state_change: time of state change
 query: current/last running query
 backend_start: process start time
 xact_start: TX start time
 query_start: query start time
 wait_event: what backend is waiting
 for (e.g. Lock, I/O, etc)

 …

@LukasFittl

of Connections By State

SELECT state,
 backend_type,
 COUNT(*)
 FROM pg_stat_activity  
 GROUP BY 1, 2

@LukasFittl

Longest Running Query

 SELECT now() - query_start,
 query
 FROM pg_stat_activity  
 WHERE state = ‘active’
 ORDER BY 1
 LIMIT 1

@LukasFittl

Age Of Oldest Transaction

SELECT MAX(now() - xact_start)  
 FROM pg_stat_activity  
 WHERE state <> ‘idle’

@LukasFittl

pg_stat_activity
 lock information

https://github.com/postgrespro/pg_wait_sampling

@LukasFittl

1. Install postgresql contrib package (if not installed)

2. Enable in postgresql.conf  
shared_preload_libraries = ‘pg_stat_statements’

3. Restart your database

4. Create the extension  
CREATE EXTENSION pg_stat_statements;

pg_stat_statements

@LukasFittl

SELECT * FROM pg_stat_statements;

userid | 10
dbid | 1397527
query | SELECT * FROM x WHERE y = $1
calls | 5
total_time | 15.249
rows | 0
shared_blks_hit | 451
shared_blks_read | 41
shared_blks_dirtied | 26
shared_blks_written | 0
local_blks_hit | 0
local_blks_read | 0

pg_stat_statements

@LukasFittl

Supported on cloud platforms

@LukasFittl

queryid | 1720234670
query | SELECT * FROM x WHERE y = ?
calls | 5
total_time | 15.249

Query + No. of Calls + Avg Time

@LukasFittl

shared_blks_hit | 2447215
shared_blks_read | 55335

Avg. Shared Buffer Hit Rate

hit_rate = shared_blks_hit /
 (shared_blks_hit + shared_blks_read)

97.78% Cache Hit Rate

@LukasFittl

blk_read_time | 14.594
blk_write_time | 465.661

Time spent reading/writing to disk
track_io_timing = on

pg_qtop
Simple top-like tool that shows

pg_stat_statements data

https://github.com/lfittl/pg_qtop

https://github.com/lfittl/pg_qtop

AVG | QUERY
--
10.7ms | SELECT oid, typname, typelem, typdelim, typinput FROM pg_type
3.0ms | SET time zone 'UTC'
0.4ms | SELECT a.attname, format_type(a.atttypid, a.atttypmod), pg_get_expr(d.adbin, d.adrelid),
a.attnotnull, a.atttypid, a.atttypmod FROM pg_attribute a LEFT JOIN pg_attrdef d ON a.attrelid
= d.adrelid AND a.attnum = d.adnum WHERE a.attrelid = ?::regclass AND a.attnum > ? AND NOT
a.attisdropped ORDER BY a.attnum
0.2ms | SELECT pg_stat_statements_reset()
0.1ms | SELECT query, calls, total_time FROM pg_stat_statements
0.1ms | SELECT attr.attname FROM pg_attribute attr INNER JOIN pg_constraint cons ON attr.attrelid
= cons.conrelid AND attr.attnum = cons.conkey[?] WHERE cons.contype = ? AND cons.conrelid = ?:
:regclass
0.0ms | SELECT COUNT(*) FROM pg_class c LEFT JOIN pg_namespace n ON n.oid = c.relnamespace WHERE
c.relkind in (?,?) AND c.relname = ? AND n.nspname = ANY (current_schemas(?))
0.0ms | SELECT * FROM posts JOIN users ON (posts.author_id = users.id) WHERE users.login = ?;
0.0ms | SET client_min_messages TO 'panic'
0.0ms | set client_encoding to 'UTF8'
0.0ms | SHOW client_min_messages
0.0ms | SELECT * FROM ad_reels WHERE id = ?;
0.0ms | SELECT * FROM posts WHERE guid = ?;
0.0ms | SELECT ?
0.0ms | SET client_min_messages TO 'warning'
0.0ms | SET standard_conforming_strings = on
0.0ms | SELECT "posts".* FROM "posts" ORDER BY "posts"."id" DESC LIMIT ?
0.0ms | SHOW TIME ZONE

pg_qtop -d testdb

AVG | QUERY
--
0.0ms | SELECT * FROM posts JOIN users ON (posts.author_id = users.id) WHERE users.login = ?;
0.0ms | SELECT * FROM posts WHERE guid = ?;
0.0ms | SELECT "posts".* FROM "posts" ORDER BY "posts"."id" DESC LIMIT ?

pg_qtop -d testdb -t posts

AVG | CALLS | HIT RATE | QUERY
--
0.1ms | 1 | 100.0 | SELECT * FROM users;
0.1ms | 1 | - | SELECT * FROM databases;
0.0ms | 1 | - | SELECT * FROM invoices;
0.0ms | 1 | - | SELECT * FROM query_snapshots;

pg_qtop -d testdb -s select

pganalyze.com

http://pganalyze.com
https://github.com/lfittl/pg_qtop

@LukasFittl

Lock Statistics
pg_locks

 pid: process ID
 (JOIN to pg_stat_activity.pid!)
locktype: type of object being locked
 mode: locking type (e.g. AccessExclusive)
 granted: Lock Granted vs Being Waited For
 …

@LukasFittl

Lock Statistics
pg_locks

SELECT *
 FROM pg_locks
 WHERE NOT granted

@LukasFittl

Lock Statistics
pg_locks

SELECT locktype,
 mode,
 COUNT(*)
 FROM pg_locks
 WHERE granted
 GROUP BY 1, 2

@LukasFittl

Checkpoint Statistics
pg_stat_bgwriter

checkpoints_timed: # of scheduled checkpoints
 checkpoints_req: # of requested checkpoints

1. Time Between Checkpoints
2. % of Timed Checkpoints

@LukasFittl

autovacuum

=> SELECT pid, query FROM pg_stat_activity
 WHERE query LIKE 'autovacuum: %';

 10469 | autovacuum: VACUUM ANALYZE public.schema_columns
 12848 | autovacuum: VACUUM public.replication_follower_stats
 28626 | autovacuum: VACUUM public.schema_index_stats
 | (to prevent wraparound)
(3 rows)

pg_stat_activity

@LukasFittl

autovacuum
pg_stat_activity

@LukasFittl

autovacuum
pg_stat_progress_vacuum

 relid: OID of the table
 phase: current VACUUM phase
 heap_blks_total: Heap Blocks Total
 heap_blks_scanned: Heap Blocks Scanned
heap_blks_vacuumed: Heap Blocks Vacuumed
 …

@LukasFittl

autovacuum
pg_stat_progress_vacuum

@LukasFittl

pg_stat_replication

 client_addr: ip address of the follower
 backend_start: replication start time
 state: replication state
 (ideally = streaming)
replay_location: WAL location

@LukasFittl

pg_stat_replication

SELECT client_addr,
 pg_wal_lsn_diff(
 pg_current_wal_lsn(),
 replay_location)
 FROM pg_stat_replication

Replication Lag in Bytes, Per Follower

@LukasFittl

pg_stat_replication
Replication Lag in Bytes, Per Follower

@LukasFittl

CPU & I/O Utilization

@LukasFittl

Statistics That Matter

Two Tables To Remember

Breaking Down High-Level Statistics

Log Events Worth Knowing

Fingerprinting & Tracing Queries

@LukasFittl

“We had an outage yesterday at
10am - what happened?”

@LukasFittl

Keeping Historic
Statistics Data

Is Essential

@LukasFittl

DIY Monitoring Hack:
Save pg_stat_activity and

pg_stat_database
every 10 seconds

into a separate monitoring database

@LukasFittl

pg_stat_activity

- Number & State of Connections
- Oldest Query Still Running
- Oldest Transaction Still Open
- Blocked Queries

@LukasFittl

pg_stat_database
- Transactions Per Second
- Data Read Per Second
- Rows Updated/etc Per Second
- Deadlocks Per Second
- …

@LukasFittl

Statistics That Matter

Two Tables To Remember

Breaking Down High-Level Statistics

Log Events Worth Knowing

Fingerprinting & Tracing Queries

@LukasFittl

Ability to Drill Down
From “High CPU Utilization”
To Specific Set of Queries

@LukasFittl

@LukasFittl

@LukasFittl

@LukasFittl

CPU Utilization

pg_stat_statements.total_runtime

@LukasFittl

I/O Utilization

pg_stat_statements.blk_read_time
pg_stat_statements.blk_write_time

@LukasFittl

Cache Hit Ratio %

pg_stat_statements.shared_blks_hit
pg_stat_statements.shared_blks_read

pg_stat_database.blks_hit
pg_stat_database.blks_read

@LukasFittl

Temporary Files Written

pg_stat_statements.temp_blks_written

pg_stat_database.temp_bytes

@LukasFittl

Statistics That Matter

Two Tables To Remember

Breaking Down High-Level Statistics

Log Events Worth Knowing

Fingerprinting & Tracing Queries

@LukasFittl

LOG: duration: 4079.697 ms execute <unnamed>:
SELECT * FROM x WHERE y = $1 LIMIT $2
DETAIL: parameters: $1 = 'long string', $2 = ‘1'

Slow Queries
log_min_duration_statement

= 1000 ms

@LukasFittl

@LukasFittl

@LukasFittl

auto_explain
logs the query plan  

for specific slow queries

@LukasFittl

@LukasFittl

@LukasFittl

Cancelled Queries
 ERROR: canceling statement due to
 statement timeout
STATEMENT: SELECT 1

 ERROR: canceling statement due to  
 user request
STATEMENT: SELECT 1

 …

@LukasFittl

log_lock_waits = on

LOG: process 20679 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 after 1000.115 ms
LOG: process 20678 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 after 1000.126 ms
LOG: process 15533 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 1000.129 ms
LOG: process 20663 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 1000.100 ms
LOG: process 15537 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 1000.130 ms
LOG: process 15536 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 1000.222 ms
LOG: process 20734 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 1000.130 ms
LOG: process 15538 still waiting for ExclusiveLock on tuple (566,1) of relation 16421 1000.136 ms
LOG: process 15758 still waiting for ShareLock on transaction 250175899 after 1000.073 ms

Lock Waits

@LukasFittl

archive_command Failures
LOG: archive command failed with
exit code 1
DETAIL: The failed archive command
was: /my_backup_script.sh pg_xlog/
0000000100025DFA00000023

@LukasFittl

Out of Memory

 ERROR: out of memory
DETAIL: Failed on request of size 408028.
 QUERY: SELECT 1 ...

@LukasFittl

Out of Connections

FATAL: remaining connection slots
are reserved for non-replication
superuser connections

@LukasFittl

Server Crash / Segfault
LOG: server process (PID 660) was
terminated by signal 6: Aborted
DETAIL: Failed process was running:
SELECT pg_advisory_lock(1, 2);
LOG: terminating any other active
server processes
WARNING: terminating connection
because of crash of another server
process
…

@LukasFittl

TXID Wraparound
WARNING: database “mydb" must
 be vacuumed within 938860
 transactions

 HINT: To avoid a database
 shutdown, execute a full-
 database VACUUM in
 “mydb".

@LukasFittl

TXID Wraparound
ERROR: database is not accepting
 commands to avoid wraparound
 data loss in database “mydb”

 HINT: Stop the postmaster and use a
 standalone backend to vacuum
 that database. You might also
 need to commit or roll back
 old prepared transactions.

@LukasFittl

Statistics That Matter

Two Tables To Remember

Breaking Down High-Level Statistics

Log Events Worth Knowing

Fingerprinting & Tracing Queries

@LukasFittl

Fingerprinting
Identifying & Grouping Queries

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ‘value’

A

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ‘value’

SELECT a, b
 FROM public.test
 WHERE col = ‘other_value’

A

B

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ?

SELECT a, b
 FROM public.test
 WHERE col = ?

A

A

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ?

SELECT a, b —— COMMENT
 FROM public.test
 WHERE col = ?

A

B

@LukasFittl

SELECT queryid, query FROM pg_stat_statements;
 queryid | query
------------+--
 1115711211 | SELECT a, b FROM public.test WHERE col = $1
(1 row)

pg_stat_statements

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ?

SELECT a, b —— COMMENT
 FROM public.test
 WHERE col = ?

A

queryid = 1115711211

queryid = 1115711211

A

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ?

SELECT b, a —— COMMENT
 FROM public.test
 WHERE col = ?

A

queryid = 1115711211

queryid = 2511327719

B

@LukasFittl

irb> PgQuery.fingerprint(
 ‘SELECT a, b FROM public.test WHERE col = $1’)

=> 0254f1e78f2d47b258d7b022f3dfa5794351a75128

pg_query

@LukasFittl

SELECT a, b
 FROM public.test
 WHERE col = ?

SELECT b, a /* COMMENT */
 FROM public.test
 WHERE col = ?

A

fingerprint = 0254f1e78f2d47b258d7b022f3dfa5794351a75128

fingerprint = 0254f1e78f2d47b258d7b022f3dfa5794351a75128

A

@LukasFittl

PgQuery.fingerprint
- Based on Postgres Parsetree
- Table names, not OIDs
- Identical across servers 

& Postgres versions
https://github.com/lfittl/libpg_query/wiki/Fingerprinting

https://github.com/lfittl/libpg_query/wiki/Fingerprinting

@LukasFittl

Tracing Queries
Based On Their Query Origin

@LukasFittl

@LukasFittl

@LukasFittl

application: pganalyze
 controller: graphql
 action: graphql
 line: /app/graphql/organization_type.rb …
 graphql: getOrganizationDetails.logVolume24h
 request_id: 44bd562e-0f53-453f-831f-498e61ab6db5

@LukasFittl

github.com/basecamp/marginalia

Automatic
Query Annotations For Ruby on Rails

@LukasFittl

3 Take-Aways

1. Collect Historic Metrics
2. Focus on Drill-Down To Query Level
3. Annotate Your Queries With
 Their Origin

@LukasFittl

Monitor Your Postgres:
pganalyze.com 

 
Scale Your Postgres:

citusdata.com

Thanks!

