WINDOW
FUNCTIONS

By Willem Booysen

Version 1.5

About me

Accountant turned Accidental DBA

God loving, happily married man with 2 wonderful kids.

I'm an accountant by trade and an Accidental DBA by luck.

Spend most of my Postgres time in SQL scripting.

Let's get on with it!

Content Overview

What you can expect in this presentation

STEP 1

WHY WINDOW FUNCTIONS?

What are Window Functions and
why use them?

STEP 2
GETTING TO KNOW OUR DATA

Create the database and tables we'll
use in this Presentation and getting
to know our data

STEP 3
WINDOWS VS PARTITIONS

Understand how your base result set,
windows and partitions interact.

STEP4
BASIC SYNTAX

OVER()
PARTITION BY

STEP S
ROWS AND RANKS

Because rows should know their
place

STEP 6
LAG and LEAD

This has nothing to do with gaming...

STEP 7
FIRST & LAST

't's not as simple as it sounds...

STEP 8
LESS BASIC SYNTAX

Rows, Ranges, Unbounded, following
and preceding... Your head will hurt
here.

-

STEP 9
RUNNING TOTALS

Because I'm an accountant...

STEP 10
WATCH OUT!

Things you should be aware of

FINISH

What is a Window Function?

"A WINDOW FUNCTION performs a calculation across
a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation
that can be done with an aggregate function. But unlike
regular aggregate functions, use of a window function
does not cause rows to become grouped into a single
output row — the rows retain their separate identities.”

—PostgreSQL Manual

“What?”

Basically, Window Functions were created to
stop people from using Self Joins and generally
the complexity of queries around
analytics, aggregate data
and extensive use of cursors.

Il illustrate this soon, but first you
need to understand the underlying
data used in the coming examples

3 Departments
_

e Accounting (5)
 Production (6)
e T (7)

Messed up index
[

OUR DATA

emp_no emp_name dept_name salary_amt
integer character varying(20) character varying(15) numeric(8,2)
1 Mark Stone Accounting 16000.00
2 Maria Stone Accounting (13000.00
3 Geetha Singh Accounting _13000.00
4 Richard Hathaway Accounting (14000.00
5 Joseph Bastion Accounting _14000.00
6 Arthur Prince Production 12000.00
/ Adele Morse Production 13000.00
8 Sheamus O Kelly Production (24000.00
9 Sheilah Flask Production _24000.00
10 Brian James Production 16000.00
11 Adam Scott Production _16000.00
12 Maurice Moss IT 12000.00
13 Roy IT 12001.00
14 Jen Barber IT 28000.00
15 Richard Hammond IT "10000.00
16 James May IT 10000.00
(18 |Jeremy Clarkson T _10000.00
17 John Doe IT 100000.00

|

Duplicate Salaries
[

DEMO

TIME FOR SOME FUN

Xk

Demo Recap

Traditional Method

Window Functions

WITH Dept_stats AS (

SELECT
dept_name,
COUNT(*) AS dept_employee_count,
MIN(salary_amt) AS min_dept_salary,
MAX(salary_amt) AS max_dept_salary,
AVG(salary_amt)::DECIMAL(8,2) AS average_dept_salary,
SUM(salary_amt) AS total_dept_salaries

FROM Payroll

SELECT

COUNT(®)

COUNT(*)

MIN(salary_amt)

MAX(salary_amt)

AVG(salary_amt)

SUM(salary_amt)
FROM Payroll

VS

OVER () AS total_employee_count,

OVER (PARTITION BY dept_name) AS dept_employee_count,
OVER (PARTITION BY dept_name) AS min_dept_salary,
OVER (PARTITION BY dept_name) AS max_dept_salary,
OVER (PARTITION BY dept_name)::DECIMAL(8,2) AS avg_dept_sal,
OVER (PARTITION BY dept_name) AS total_dept_salaries

ORDER BY dept_name, emp_name;

GROUP BY dept_name
ORDER BY dept_name

SELECT
Payroll.*,
(Select count(*) from Payroll) AS total_employee_count,
Dept_stats.dept_employee_count,
Dept_stats.min_dept_salary|
Dept_stats.max_dept_salary,
Dept_stats.average_dept_salary,
Dept_stats.total_dept_salaries

FROM Payroll

LEFT OUTER JOIN Dept_stats ON (Payroll.dept_name = Dept_stats.dept_name)

ORDER BY Payroll.dept_name, emp_name

Demo Recap

Window Functions

SELECT
COUNT(*) OVER () AS total_employee_count,
COUNT(*) OVER (PARTITION BY dept_name) AS dept_employee_count,

It all starts with an
Aggregate Function

MIN(salary_amt) OVER (PARTITION BY dept_name) AS min_dept_salary,
MAX(salary_amt) OVER (PARTITION BY dept_name) AS max_dept_salary,
AVG(salary_amt) OVER (PARTITION BY dept_name)::DECIMAL(8,2) AS avg_dept_sal,
SUM(salary_amt) OVER (PARTITION BY dept_name) AS total_dept_salaries

FROM Payroll

ORDER BY dept_name, emp_name;

A visual guide to Windows and Partitions ©

Knowing WHERE it's at is half the battle

OVER (PARTITION BY...)
m E m Split the Base Data Set into PARTITIONSs and E

open a Window OVER each of them

OVER ()
Open a Window OVER the entire Base Data Set.

A window'’s beauty is limited to the landscape beyond - the Base Data Set

WHERE

YOUR TABLE

All the data within your table, before

_ - BES
any queries against it

Basic Syntax

OVER (PARTITION BY...)

OVER ()

OVER (PARTITION BY...)

OVER ()

PARTITION BY

OVER (PARTITION BY... ORDER BY ...)

ORDER BY

You can also control the order in which rows

are processed by window functions using the
ORDER BY clause.

The window ORDER BY does not have to

match the order in which the rows are output
(the order of the Base Data Set)

DEMO

TIME FOR SOME FUN

Ranking

't's not as simple as first, second and third...

One cannot assign a
rank without ORDER

Row_ Numbers

Allocates row numbers based
on the ORDER BY specified
within the Window.

Ranking

't's not as simple as first, second and third...

Rank

Duplicate values are assigned
the same rank, SKIPPING the

next number in line.

Dense_Rank

Duplicate values are assigned
the same rank, no values are

skipped.

DEMO

ORDER IN THE COURT!

Advanced Ranking

(For Data Scientists and Statisticians)

percent_rank()
Relative rank of the current row... (rank -1) / (total rows - 1)

cume dist()

Relative rank of the current row... (no or rows preceding or peer with
current row) / (total rows)

ntile(hnum_buckets integer)
Returns integer ranging from 1 to the argument value, dividing the
partition as equally as possible

DEMO... AGAIN

GOOD LUCK WITH THIS ONE...

LAG and LEAD

Offset from the current row

Syntax

D/LAG (column, offset, default value) OV

FIRST and LAST

Offset relative to beginning/end of the window frame

Syntax

-IRST_VALL

AST_VALU

- (column) OV

- (column) OVER (...)

R ()

Window Frames increase with
each row inside your partition,
from row 1. Think of it as analytics

step

rTOW
by
rTOW

(based on your partition order)

wIinaow frame

DEMO

LAG & LEAD

with some

FIRST & LAST

Catchy Phrases

Mostly hidden

ROWS BETWEEN Row Function / Position B ROWS BETWEEN
1 First Value / Min
2
N ° = UNBOUNDED PRECEDING
2 PRECEDING — i
B - Lag >
AND M ¢ Current Row N AND
/ Lead
3 FOLLOWING = 8
9 = UNBOUNDED FOLLOWING

10 ..
11 Last Value / Max

Unless you have an ORDER BY...
Then the default becomes:

RANGE BETWEEN Row Function / Position _ RANGE BETWEEN
1 First Value / Min
2
B = UNBOUNDED PRECEDING
2 PRECEDING = i
B - Lag >
AND M ¢ Current Row N AND
/ Lead
3 FOLLOWING = 8
9 = UNBOUNDED FOLLOWING

10 ..
11 Last Value / Max

TIME FOR SOME FUN

Catchy Phrases

Mostly hidden

What is the difference between ROWS between
and RANGE between?

» "ROWS"is over "PARTITION BY"
» "RANGE" is over "ORDER BY" (within the Partition of course)

unning Totals

Because I'm an accountant

DEMO

Run Mr Totals. Run!

WARNING

N\

1. Issues with Distinct()

2. You cannot use Window Functions in your WH

3. Window

-R

-rames effect functions, e.g. MIN/MAX/

- clauses

-IRST/LAST

38

A

DEMO

Crash and burn

39

