
Face recognition and Postgres

Kobus Wolvaardt + Engineering and AI background
+ Medical software company
+ Has too many kids and needs face

recognition software to help
classify them

+ I will keep this very short

Why face
recognition

+ Cameras widely available
+ Software Libraries
+ Avatar common
+ Patient image help medical legal
+ Face based search convenient
+ It really demonstrates Postgres’s

extensibility

+ Get consent
+ Improve people’s lives if you can
+ Store only what you need
+ Get consent… really...

Ethical issues

Face recognition + Geometric
+ Photometric

Image

Transform

HASH

Earlier techniques + Photometric like Eigen faces

+ Geometric like Feature extraction

Deep learning + Deep learning can do unexpected
things

+ Researchers trained a neural net to
output a unique hash per face

+ Similar hash if same face

Postgres
extendability
(languages)

+ Python

Postgres
extendability
(languages)

+ Python
+ Perl

Postgres
extendability
(languages)

+ Python
+ Perl
+ SQL

Postgres
extendability
(languages)

+ Python
+ Perl
+ SQL
+ TCL

Postgres
extendability
(languages)

+ Python
+ Perl
+ SQL
+ TCL
+ JAVA
+ LUA
+ R
+ SH
+ Javascript

Postgres
extendability
(languages)

+ Python
+ Perl
+ SQL
+ TCL
+ JAVA
+ LUA
+ R
+ SH
+ Javascript
+ More non contrib ones

Postgres
extendability
(languages)

+ Python
+ Perl
+ SQL
+ TCL
+ JAVA
+ LUA
+ R
+ SH
+ Javascript
+ More non contrib ones
+ Can extend with custom

modules

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

+ Strings (varchar, text, citext)

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

+ Strings (varchar, text, citext)
+ Datetime (date, timestamp)

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

+ Strings (varchar, text, citext)
+ Datetime (date, timestamp)
+ Documents stores (hstore, xml,

json and jsonb)

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

+ Strings (varchar, text, citext)
+ Datetime (date, timestamp)
+ Documents stores (hstore, xml,

json and jsonb)
+ Enums

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

+ Strings (varchar, text, citext)
+ Datetime (date, timestamp)
+ Documents stores (hstore, xml,

json and jsonb)
+ Enums
+ Geo (line, circle, paths and more)
+ Network types
+ Range types

Postgres types + Numbers (int, numeric, money, and
many levels of precision)

+ Strings (varchar, text, citext)
+ Datetime (date, timestamp)
+ Documents stores (hstore, xml,

json and jsonb)
+ Enums
+ Geo (line, circle, paths and more)
+ Network types
+ Range types
+ Arrays and cubes
+ Custom types based on existing

types.

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay
+ Citext, cube, chkpass

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay
+ Citext, cube, chkpass
+ Bloom, btree_gin, btree_gist index

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay
+ Citext, cube, chkpass
+ Bloom, btree_gin, btree_gist index
+ Dblink, fdw and file_fdw

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay
+ Citext, cube, chkpass
+ Bloom, btree_gin, btree_gist index
+ Dblink, fdw and file_fdw
+ Earthdistance, fuzzystrmatch
+ Isn (types for barcodes)

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay
+ Citext, cube, chkpass
+ Bloom, btree_gin, btree_gist index
+ Dblink, fdw and file_fdw
+ Earthdistance, fuzzystrmatch
+ Isn (types for barcodes)
+ Pg_stat_statements and

pg_buffer_cache

Postgres need even
more?
Meet Contrib

+ Adminpack, auth_delay
+ Citext, cube, chkpass
+ Bloom, btree_gin, btree_gist index
+ Dblink, fdw and file_fdw
+ Earthdistance, fuzzystrmatch
+ Isn (types for barcodes)
+ Pg_stat_statements and

pg_buffer_cache
+ Pg_trgm allows indexed partial

string matches
+ Tablefunc with crosstab
+ Much much more

Our face
implementation

+ Cheating and stealing Leverage
other people’s work

+ Python dlib wrapper
+ Postgres python wrapper
+ Postgres cube type
+ Two pg functions and a trigger
+ JS code to transport the photos

Postgres language
extension

+ Postgres supports many
languages

+ Python happens to be supported
+ CREATE LANGUAGE plpython3u;
+ Python trigger upon insert to

calculate the face hash (fash)

Postgres type
extension

Array’s with distance measure as face
match, wasn’t there a module for that?

CREATE EXTENSION cube;

+ Cube provides distance queries
+ Cube provides indexed distance

searches
+ <-> operator calculates distance

and gist index allows indexed
searching. 9.6 and later

Implementation
CREATE EXTENSION cube;

CREATE TABLE facetable
(
-- Person name
 name text,
-- Person image (jpg or png) in base64 from javascript canvas
 image text,
-- Person face hash
 fash cube
);

Implementation CREATE OR REPLACE FUNCTION update_fash()
RETURNS trigger AS $BODY$
try:
 import base64, face_recognition, PIL
 try:
 data = base64.b64decode(TD["new"]["image"])
 except:
 data = TD["new"]["image"]
 Im = np.array(PIL.Image.frombytes(data))
 fash = face_recognition.face_encodings(im)[0]
 TD["new"]["fash"] = fash
 return "MODIFIED"
except:
 return "OK"
$BODY$ LANGUAGE plpython3u;

CREATE TRIGGER get_fash BEFORE UPDATE OR INSERT ON
facetable FOR EACH ROW EXECUTE PROCEDURE update_fash();

Lets have some fun Visit: https://bit.ly/2INfao8 or
https://face.quantsolutions.co.za:9443

Take a picture of your face and type
your name, submit. You will be
redirected to:

https://face.quantsolutions.co.za:9443
/facefind

Now find some faces by Snap Photo
with one or more faces in view.

This might not work on your browser (I
am not a javascript whisperer)

https://bit.ly/2INfao8

Performance We can search in 1 000 000 records on
PG9.6 and my i5 desktop in about
1200ms

The power of
PostgreSQL

● Proper programming languages
● Datatypes
● More datatypes
● Custom Extensions
● Did I mention datatypes?
● Any immutable function can be

indexed
● GIN and GIST indexes for

containment style queries
● I almost forgot to mention the

wide array of datatypes

Questions Questions?

