
Right-size your PostGIS data

Ryan Lambert
ryan@rustprooflabs.com

Owner / CEO
@ RustProof Labs

Publishes on blog.rustprooflabs.com
DB Developer / Analyst

@ Front Range CC

SELECT *

FROM pgconf.presenter

WHERE id = ‘ryanlambert’

MySQL, mid-2000s

MS SQL Server, 2009
PostgreSQL, 2011
OpenStreetMap && PostGIS

SELECT *

FROM pgconf.presenter

WHERE id = ‘ryanlambert’

Agenda

Spatial data overview
GIS tasks: Analysis vs. Thematic
Simplification strategies
Polygons
Lines

GIS Data used…

© OpenStreetMap Contributors

Thank you!

https://www.openstreetmap.org/user/RustProof%20Labs

What is spatial data?

What is spatial data?

Data about the world around us.

“GIS data is still just data!”
… we have tools for that

SELECT ST_SetSRID(

ST_Point(-73.9815, 40.7625), 4326);

Spatial data types

POINT (Node)

LINE

POLYGON

Spatial data size

Lines and Polygons can bloat quickly

Similar to
JSON

BYTEA

Puts on GIS analyst hat…

Tables in PostGIS

Layers in QGIS

Network Activity

Extra challenge

Feels slow

DB doesn’t always register
performance issues

GIS Analyst Tasks

Analysis vs. Thematic

Using spatial data: Analysis

I need coffee, quick, where’s the
nearest location?

Distance from buildings to fire
hydrants?

Is my house in a flood plain?

Using spatial data: Thematic

Density of drivers around the northeast
United States

Regional crime rates

Regional weather maps

Using Spatial Data: Thematic

Visualize trends over an area

Transactional vs. Reporting

OLTP OLAP

ETL

All data is dirty!

OpenStreetMap Data

Data entry
Some professionals

Other unpaid, untrained volunteers

Everything between

Variable quality / formatting

Thematic GIS

Large-area polygons

Counties

Zip Codes

States

Countries

Lakes

Counties of Colorado (64)

Large Polygon

Jefferson County, CO

ST_Npoints(way) = 780

ST_MemSize(way) = 12.3 kb

Counties in the western US

SELECT COUNT(*) AS county_count,

AVG(ST_NPoints(way)) AS points_avg,
SUM(ST_NPoints(way)) AS points_total,
AVG(ST_MemSize(way)) / 1024 AS kb_avg,
SUM(ST_MemSize(way)) / 1024 AS kb_total

FROM osm.boundary_polygon
WHERE admin_level = '6'

Counties in the western US

of Counties: 460

Total # of Nodes: 623k

Counties in the western US

of Counties: 460

Total # of Nodes: 623k
Average # of Nodes: 1,355

Max # of Nodes: 13,832

Counties in the western US

of Counties: 460

Total # of Nodes: 623k
Average # of Nodes: 1,355

Max # of Nodes: 13,832

Average size per polygon: 21.2 kB

Max size of polygon: 216 kB

Size Matters

Average of 16 bytes / node

What can we do?

PostGIS: ST_Simplify()

“Returns a "simplified" version of the given
geometry...”

ST_Simplify(geometry, tolerance)

Higher tolerance == More simplification

In non-spatial terms…

3.14159 ≈ 3.14

PostGIS: ST_Simplify()

SRID 900913

tolerance=10

Polygon simplification

Benefits of Simplified Polygons

Reduced # of nodes by 45-50%

Reduced size on disk by 45-50%

Improved query performance by ~ 40%

Side effects

Reduced accuracy

Potential errors
Before/After
Error rate in testing: < 0.5%

Too much simplification?

Questions so far?

Large number of small lines

Large number of small lines

OpenStreetMap roads

Interstate

Major highway

Minor highway

Residential roads

Sidewalks

Parking aisles

Hiking trails

I-70 in Colorado

I-70 in Colorado

450 miles

1,647 rows of data

19,281 nodes
MIN(ST_NPoints(way)): 2

MAX(ST_NPoints(way)): 217

Aggregate and Simplify

ST_Collect()
ST_Simplify()

ST_Collect()

Aggregate function
Think SUM() for spatial
GROUP BY
ref
name
level
city

Demo (video)

Render roads and waterways in QGIS

Two windows
Raw data: Upper-left

Thematic: Lower-right

PostGIS to QGIS Rendered

https://blog.rustprooflabs.com/2018/12/postgis-tame-your-data-2

PostGIS to QGIS Rendered

40% faster query in Postgres

80-95% faster in QGIS

QGIS pulls 2k rows at a time

QGIS has to load, process, apply rules, and
render

PostGIS to Rendered

80 - 95% improvement!

Faster in-DB spatial operations

Trees (Point) per county (Polygon)

EXPLAIN (ANALYZE, BUFFERS, COSTS)
SELECT c.osm_id, c.name, c.way,

COUNT(n.osm_id) AS trees
FROM osm.county_polygon c
INNER JOIN osm.natural_point n

ON ST_Contains(c.way, n.way)
WHERE n."natural" = 'tree’
AND c.name = 'Jefferson County’

GROUP BY c.osm_id, c.name, c.way
;

Trees per county

Raw

274 MB

Trees per county

Raw

Thematic

274 MB

134 MB (-51% diff in spillage)

Trees per county

Raw

Thematic

Latencies at Human Scale

System Event
Actual

Latency
Scaled

Latency
One CPU cycle 0.4 ns 1 s
Level 1 cache access 0.9 ns 2 s
Level 2 cache access 2.8 ns 7 s
Level 3 cache access 28 ns 1 min
Main memory access (DDR DIMM) ~100 ns 4 min
SSD I/O 50–150 μs 1.5–4 days
Rotational disk I/O 1–10 ms 1–9 months
Internet call: San Francisco to New York City 65 ms[3] 5 years
Internet call: San Francisco to Hong Kong 141 ms3 11 years

https://www.prowesscorp.com/computer-latency-at-a-human-scale/

When to optimize?

ETL

Views / Materialized views

Ad-hoc queries

ETL: PgOSM Project

Started in 2015
Transforms osm2pgsql structure to “Layers”

MIT License

https://github.com/rustprooflabs/pgosm

Final Thoughts

Postgres v11…

Covering indexes!

Coming in Postgres v12

Covering GIST indexes

CREATE INDEX gix_road_line
ON osm.road_line
USING GIST (way)
INCLUDE (highway, ref);

 https://commitfest.postgresql.org/21/1615/

 https://github.com/postgres/postgres/commit/f2e403803fe6deb8cff59ea09dff42c6163b2110

Resources

PostGIS Docs

https://postgis.net/docs/reference.html
https://postgis.net/workshops/postgis-intro/

RustProof Labs Blog

PostGIS: Tame your spatial data (Part 1)
PostGIS: Tame your spatial data (Part 2)
Load OpenStreetMap data to PostGIS
osm2pgsql on a Raspberry Pi
PgOSM: Transform OpenStreetMap data in

PostGIS
PgOSM Transformations explained

Versions used

 SELECT version();
 PostgreSQL 11.1 (Ubuntu 11.1-1.pgdg16.04+1) on x86_64-pc-linux-gnu,

compiled by gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609, 64-
bit

 SELECT PostGIS_Full_version();
 POSTGIS="2.5.1 r17027" [EXTENSION] PGSQL="95" (procs need upgrade for

use with "110") GEOS="3.5.0-CAPI-1.9.0 r4084" PROJ="Rel. 4.9.2, 08
September 2015" GDAL="GDAL 1.11.3, released 2015/09/16"
LIBXML="2.9.3" LIBJSON="0.11.99" LIBPROTOBUF="1.2.1" RASTER

Thank you!

Questions?

