
© 2018 Percona 1

Introduction to PostgreSQL for Oracle and MySQL DBAs 

                                                - Avi Vallarapu



© 2018 Percona 2

History of PostgreSQL

Ingres 

Year 1973 - INGRES (INteractive GRaphics Retrieval System), work on one of the world's first RDBMS was Started by Eugene Wong and Michael 
Stonebraker at University of California at Berkeley. 

Year 1979 - Oracle Database first version was released.  

Early 1980’s - INGRES used QUEL as its preferred Query Language. Whereas Oracle used SQL. Ingres lost its Market dominance to Oracle as it was too 
late for IngreS to adopt SQL as a Preferred Query Language as opposed to QUEL.  

Year 1985 - UC Berkeley INGRES research project officially ended. 

Postgres 

Year 1986 - Postgres was introduced as a Post-Ingres evolution aimed to incorporate ORDBMS. Postgres used POSTQUEL as its query language until 1994 

Year 1995 - Postgres95 replaced Postgres with its support for SQL as a query language. - Andrew Yu and Jolly Chen(PhD students from Stonebraker’s 
lab). 

PostgreSQL 

Year 1996 - Project renamed to PostgreSQL to reflect the original name Postgres and its SQL Compatibility. 

Year 1997 - PostgreSQL first version - PostgreSQL 6.0 released.



© 2018 Percona 3

PostgreSQL Features

▪ Portable 
▪ Written in C 
▪ Flexible across all the UNIX platforms, Windows, MacOS and others. 
▪ World’s most advanced open source database. Community driven.  
▪ ANSI/ISO Compliant SQL support.  

▪ Reliable 
▪ ACID Compliant 
▪ Supports Transactions 
▪ Uses Write Ahead Logging 

▪ Scalable 
▪ MVCC 
▪ Table Partitioning 
▪ Tablespaces 
▪ FDWs 
▪ Sharding



© 2018 Percona 4

▪ Security 
▪ Host-Based Access Control 
▪ Object-Level and Row-Level Security 
▪ Logging and Auditing 
▪ Encryption using SSL 

▪ High Availability 
▪ Synchronous/Asynchronous Replication and Delayed Standby 
▪ Cascading Replication  
▪ Online Consistent Physical Backups and Logical Backups 
▪ PITR 

▪ Other Features 
▪ Triggers and Functions/Stored Procedures 
▪ Custom Stored Procedural Languages like PL/pgSQL, PL/perl, PL/TCL, PL/php, PL/python, PL/java. 
▪ PostgreSQL Major Version Upgrade using pg_upgrade 
▪ Unlogged Tables 
▪ Materialized Views 
▪ Hot Standby - Slaves accept Reads

PostgreSQL Advanced Features



© 2018 Percona 5

▪ After Initializing your PostgreSQL using initdb (similar to mysqld --initialize) and starting it, you can create 
multiple databases in it.  

▪ A group of databases running on one Server & One Port - Is called a Cluster in PostgreSQL.  

▪ PostgreSQL Cluster may be  referred to as a PostgreSQL Instance as well. 

▪ A PostgreSQL Cluster or an Instance : 
▪ Serves only one TCP/IP Port 
▪ Has a Dedicated Data Directory 
▪ Contains 3 default databases : postgres, template0 and template1.  

▪ When you add a Slave(aka Standby) to your PostgreSQL Cluster(Master), it may be referred to as a 
PostgreSQL High Availability Cluster or a PostgreSQL Replication Cluster.  

▪ PostgreSQL Cluster that can accept Writes and ships WALs to Slave(Standby), is called a Master. 

PostgreSQL Cluster



© 2018 Percona 6

▪A PostgreSQL Database can contain one or more Schemas. Default Schema is - 
public schema.  

▪A Schema is a logical entity used to group objects together. An example : A 
Folder/Directory that contains Tables, Index and other objects as files.   

▪A Database can be related to a Parent Folder/Directory that contains one or more 
Schemas.  

▪You can always have more than 1 Database with one or more Schemas in it. 

▪A Schema in PostgreSQL helps you group objects of a certain Application logic 
together. This helps you create multiple objects with the same name in one 
Database.  
 

For example : In a Database named percona, A Table employee can exist in both 
full_time and contractor schemas.  

Database : percona 
Schema(s) : scott & tiger 
Tables :  1. scott.employee 

                 2. tiger.employee  
▪A Fully Qualified Table Name : schemaname.tablename must be used to query a 
particular Table in a Schema.  
For example :  

select * from scott.employee where salary > 10000; 

PostgreSQL Database & Schema



© 2018 Percona 7

▪ Atomicity : Transactions. Either All or Nothing.  

                  BEGIN …SQL1, SQL2, …SQLn…..COMMIT/ROLLBACK/END. 

▪ Consistency : Give me a consistent picture of the data based on Isolation Levels.   
                       Let us see the following example when Isolation Level is READ_COMMITTED 
 
                       Query 1 : select count(*) from employees; 
 
                       9am : Records in employee table : 10000 
                       9:10 am : Query 1 Started by User 1 
                       9:11am : 2 employee records deleted by User 2. 
                       9:12am : Query 1 that was started by User 1 Completed. 
                
Result of Query 1 at 9:12am would still be 10000. A Consistent image as how it was at 9:00am. 

▪ Isolation : Prevent Concurrent data access through Locking.  

▪ Durability : Once the Data is committed, it must be  safe.  
                   Through WAL’s, fsync, synchronous_commit, Replication. 
                        

PostgreSQL ACID Compliance



© 2018 Percona 8

▪ PostgreSQL was designed in academia 

▪ Objects are defined in academic terms 
▪ Terminology based on relational calculus/algebra

PostgreSQL Terminology



© 2018 Percona 9

Applications connect to Database and send SQL’s to interact with the Database. Client-side APIs are needed 

to send SQL’s and receive the results. 

▪ libpq :  
▪ C application programmer’s interface to PostgreSQL. 
▪ libpq is is a set of library functions that allow client programs to pass queries to the PostgreSQL 

backend server and to receive the results of these queries. 
▪ Along with C, other PostgreSQL application interfaces such as C++, Perl, Python, Tcl and ECPG uses 

libpq. 

▪ JDBC : 
▪ Java, Client side API

Client Architecture



© 2018 Percona 10

                              PostgreSQL Installation



© 2018 Percona 11

PGDG Repository : PostgreSQL Global Development Group maintains YUM and APT repository of PostgreSQL for the linux 
platforms. One of the most easiest and the desired methods is to install PostgreSQL using rpm’s from PGDG repo. 

For YUM 
https://yum.postgresql.org 

For APT 
https://apt.postgresql.org/pub/repos/apt/ 

Step 1 : 

Choose the appropriate rpm that adds pgdg repo to your server. Please make sure to choose the desired PostgreSQL version and the 
OS version appropriately. Install the pgdg repo rpm using YUM. 

# yum install https://yum.postgresql.org/11/redhat/rhel-7.5-x86_64/pgdg-centos11-11-2.noarch.rpm 

Step 2 : 

Install PostgreSQL using the following step. 

# yum install postgresql11 postgresql11-contrib postgresql11-libs postgresql11-server

PostgreSQL Installation using rpm’s on RedHat/CentOS/OEL - we did this for you in your VM

https://yum.postgresql.org
https://apt.postgresql.org/pub/repos/apt/
https://yum.postgresql.org/11/redhat/rhel-7.5-x86_64/pgdg-centos11-11-2.noarch.rpm


© 2018 Percona 12

Clone the virtual machine shared with you



© 2018 Percona 13

▪ We use initdb to Initialize a PostgreSQL cluster 

$echo "PATH=/usr/pgsql-11/bin:$PATH">>~/.bash_profile  
$source .bash_profile 

$echo $PGDATA 
/var/lib/pgsql/11/data 

$initdb --version 
initdb (PostgreSQL) 11.0 

$initdb  

Initialize your first PostgreSQL Cluster



© 2018 Percona 14



© 2018 Percona 15

▪ PostgreSQL can be stopped and started from command line using pg_ctl. 

▪ Starting PostgreSQL  

▪ pg_ctl -D $PGDATA start 

▪ Stopping PostgreSQL  

▪ pg_ctl -D $PGDATA stop

Starting and Stopping PostgreSQL



© 2018 Percona 16

▪ PostgreSQL Cluster supports various shutdown modes which has its own advantages and disadvantages and can be used according to the need that arises. 

▪ -ms (Smart Mode - Default mode)  
▪ Waits for all connections to exist and does not allow new transactions. 
▪ Ensures that the committed transactions are applied to Disk through a CHECKPOINT before shutdown. 
▪ May take more time on busy systems 
 
$ pg_ctl -D $PGDATA stop -ms  

▪ -mf (Fast Mode - Recommended on Busy Systems)  
▪ Closes/Kills all the open transactions and does not allow new transactions. SIGTERM is sent to server processes to exit promptly. 
▪ Ensures that the committed transactions are applied to Disk through a CHECKPOINT before shutdown. 
▪ Recommended on Busy Systems  
 
$ pg_ctl -D $PGDATA stop -mf 

▪ -mi (Immediate Mode - Forced and Abnormal Shutdown during Emergencies)  
▪ SIGQUIT is sent to all the processes to exit immediately, without properly shutting down.  
▪ Requires Crash Recovery after Instance Start.  
▪ Recommended in Emergencies.  
 
$ pg_ctl -D $PGDATA stop -mi

Shutdown Modes in PostgreSQL



© 2018 Percona 17

▪ Connect to your PostgreSQL using psql 

▪ $ psql  
 
List the databases 
 
\l      
\l +  (Observe the difference) 
 
To connect to your database 
 
\c dbname 
 
List Objects 
 
\dt -> List all the tables  
\dn -> List all the schemas  

▪ Show all backslash (shortcut) commands 
 
\?

Connecting to PostgreSQL and the shortcuts using backslash commands



© 2018 Percona 18

                              PostgreSQL Architecture



© 2018 Percona 19

Multi-Process Architecture. 

▪ Postmaster (Parent PostgreSQL Process)  

▪ Backend Utility Processes  

▪ Per-Connection backend processes  

▪ Every Connection is a Process. 

PostgreSQL Server



© 2018 Percona 20

Start your PostgreSQL Instance and see the postgres processes

Background Utility Processes



© 2018 Percona 21



© 2018 Percona 22

▪ Postmaster :  

▪ Master database control process. 
▪ Responsible for startup & shutdown 
▪ Spawning other necessary backend processes  

▪ Postgres backend :  

▪ Dedicated, per-connection server process 
▪ Responsible for fetching data from disk and communicating with the client

Process Components



© 2018 Percona 23

▪ BGWriter :  

▪ Background Writer 
▪ Writes/Flushes dirty data blocks to disk 

▪ WAL Writer :  

▪ Writes WAL Buffers to Disk. 
▪ WAL Buffers are written to WALs(Write-Ahead Logs) on the Disk.  

▪ Autovacuum :  

▪ Starts Autovacuum worker processes to start a vacuum and analyze 

▪ Checkpointer : 

▪ Perform a CHECKPOINT that ensures that all the changes are flushed to Disk 
▪ Depends on configuration parameters. 

Utility Processes



© 2018 Percona 24

▪ Archiver :  

▪ Archives Write-Ahead-Logs 
▪ Used for High Availability, Backups, PITR  

▪ Logger :  

▪ Logs messages, events, error to syslog or log files.  
▪ Errors, slow running queries, warnings,..etc. are written to log files by this Process. 

▪ Stats Collector :  

▪ Collects statistics of Relations.  
▪ Similar to ANALYZE in MySQL

Utility Processes (Cont.d)



© 2018 Percona 25

▪ WAL Sender : 

▪ Sends WALs to Replica(s).  
▪ One WAL Sender for each Slave connected for Replication. 

▪ WAL Receiver :  

▪ Started on a Slave(aka Standby or Replica) in Replication 
▪ Streams WALs from Master 

▪ bgworker :  

▪ PostgreSQL is extensible to run user-supplied code in separate processes that are monitored by Postgres. 
▪ Such processes can access PostgreSQL's shared memory area  
▪ Connect as a Client using libpq  

▪ bgworker: logical replication launcher 

▪ Logical Replication between a Publisher and a Subscriber

Utility Processes (Cont.d)



© 2018 Percona 26

▪ Shared Buffers  

▪ PostgreSQL Database Memory Area 
▪ Shared by all the Databases in the Cluster 
▪ Pages are fetched from Disk to Shared Buffers during Reads/Writes 
▪ Modified Buffers are also called as Dirty Buffers 
▪ Parameter : shared_buffers sets the amount of RAM allocated to shared_buffers 
▪ Uses LRU Algorithm to flush less frequently used buffers. 
▪ Dirty Buffers written to disk after a CHECKPOINT. 

▪ WAL Buffers :  

▪ Stores Write Ahead Log Records 
▪ Contains the change vector for a buffer being modified. 
▪ WAL Buffers written to WAL Segments(On Disk). 

▪ work_mem : 

▪ Memory used by each Query for internal sort operations such as ORDER BY and DISTINCT.  
▪ Postgres writes to disk(temp files) if memory is not sufficient.

Memory Components



© 2018 Percona 27

▪ maintenance_work_mem 

▪ Amount of RAM used by VACUUM, CREATE INDEX, REINDEX like maintenance operations. 
▪ Setting this to a bigger value can help in faster database restore. 

Memory Components (Cont.d)



© 2018 Percona 28

▪ When it needs a Page(Data Block), it searches it’s own memory aka Shared Buffers. 
▪ If not found in shared buffers, it will request the OS for the same block. 
▪ The OS fetches the block from the Disk and gives it to Postgres, if the block is not found in OS Cache. 
▪ More important to Caching when Database and Active Data set cannot fit in memory.

PostgreSQL is not Direct IO



© 2018 Percona 29

▪ Data Directory 

▪ In MySQL, Data Directory is created when you initialize your MySQL Instance. 
▪ Initialized using initdb in PostgreSQL. Similar to mysqld --initialize 
▪ Contains Write-Ahead-Logs, Log Files, Databases, Objects and other configuration files. 
▪ You can move WAL’s and Logs to different directories using symlinks and parameters.  
▪ Environment Variable : $PGDATA 

▪ Configuration Files inside the Data Directory 
▪ postgresql.conf (Similar to my.cnf file for MySQL).  
▪ Contains several configurable parameters. 
▪ pg_ident.conf 
▪ pg_hba.conf 
▪ postgresql.auto.conf

       Disk Components



© 2018 Percona 30

What’s inside the Data Directory ?



© 2018 Percona 31

▪ PG_VERSION 
▪ Version String of the Database Cluster 

▪ pg_hba.conf 
▪ Host-Based access control file (built-in firewall)  

▪ pg_ident.conf 
▪ ident-based access file for OS User to DB User Mapping 

▪ postgresql.conf 
▪ Primary Configuration File for the Database 

▪ postmaster.opts 
▪ Contains the options used to start the PostgreSQL Instance  

▪ postmaster.pid 
▪ The Parent Process ID or the Postmaster Process ID

Configuration Files inside the Data Directory



© 2018 Percona 32

▪ postgresql.conf  

▪ Configuration file for PostgreSQL similar to my.cnf for MySQL.  
▪ This file contains all the parameters and the values required to run your PostgreSQL Instance. 
▪ Parameters are set to their default values if no modification is done to this file manually.  
▪ Located in the data directory or /etc depending on the distribution you choose and the location can be 

modifiable.   

▪ postgresql.auto.conf  

▪ PostgreSQL gives Oracle like compatibility to modify parameters using "ALTER SYSTEM". 
▪ Any parameter modified using ALTER SYSTEM is written to this file for persistence.  
▪ This is last configuration file read by PostgreSQL, when started. Empty by default.  
▪ Always located in the data directory.  

postgresql.conf vs postgresql.auto.conf



© 2018 Percona 33

▪ Use show to view a value set to a parameter  
 
       $ psql -c "show work_mem" 

▪ To see all the settings, use show all  
 
       $ psql -c "show all" 

▪ Modifying a parameter value by manually editing the postgresql.conf file  
 
       $ vi $PGDATA/postgresql.conf 

▪ Use ALTER SYSTEM to modify a parameter 
 
       $ psql -c "ALTER SYSTEM SET archive_mode TO ON" 

▪ Use reload using the following syntax to get the changes into effect for parameters not needing RESTART 
 
       $ psql -c "select pg_reload_conf()" 
        Or 
       $ pg_ctl -D $PGDATA reload

View and modify parameters in PostgreSQL



© 2018 Percona 34

▪ Base Directory 
▪ Contains Sub-Directories for every Database you create 
▪ Every Database Sub-Directory contains files for every Relation/Object created in the Database. 

▪ Datafiles  
▪ Datafiles are the files for Relations in the base directory 
▪ Base Directory contains Relations. 
▪ Relations stored on Disk as 1GB segments. 
▪ Each 1GB Datafile is made up of several 8KB Pages that are allocated as needed. 
▪ Segments are automatically added unlike Oracle. 

Base Directory & Datafiles on Disk



© 2018 Percona 35

Base Directory (Database)

1. Create a database with name as : percona  

         $ psql —c "CREATE DATABASE percona" 

2. Get the datid for the database and see if it exists in the base directory 

         $ psql —c "select datid, datname from pg_stat_database where datname = 'percona'"



© 2018 Percona 36

                              Base Directory (Schema and Relations)

1. Create a schema named : scott  

       $ psql -d percona —c "CREATE SCHEMA scott" 

2. Create a table named : employee in scott schema  

       $ psql -d percona —c "CREATE TABLE scott.employee(id int PRIMARY KEY, name varchar(20))" 

3. Locate the file created for the table : scott.employee in the base directory 

       $ psql -d percona —c "select pg_relation_filepath('scott.employee')" 



© 2018 Percona 37

       Base Directory (Block Size)

1. Check the size of the table in the OS and value of parameter : block_size 

       psql -c "show block_size"  

2. INSERT a record in the table and see the size difference 

       psql -d percona -c "INSERT INTO scott.employee VALUES (1, 'frankfurt')" 

3. INSERT more records and check the size difference  

       psql -d percona -c "INSERT INTO scott.employee VALUES (generate_series(2,1000), 'junk')"



© 2018 Percona 38

▪ WALs 
▪ When Client commits a transaction, it is written to WAL Segments (on Disk) before a success message 

is sent to Client. 
▪ Transaction Journal aka REDO Logs. Similar to InnoDB Buffers in MySQL. 
▪ Written by WAL Writer background process. 
▪ Ensures Durability with fsync and synchronous_commit set to ON and commit_delay set to 0.  
▪ Used during Crash Recovery.  
▪ Size of each WAL is 16MB. Modifiable during Initialization.  
▪ Created in pg_xlog directory until PostgreSQL 9.6. 
▪ Location of WALs is renamed to pg_wal from PostgreSQL 10.  
▪ WAL Directory exits in Data Directory by default. Can be modified using Symlinks. 
▪ WALs are deleted depending on the parameters : wal_keep_segments and checkpoint_timeout. 

Write Ahead Logs(WALs)



© 2018 Percona 39

▪ Archived WALs 
▪ WALs in pg_wal or pg_xlog are gone after a certain threshold. Archiving ensures recoverability and helps a 

Slave catch-up during replication lag.  
▪ Archiving in PostgreSQL can be enabled through parameters : archive_mode and archive_command. 
▪ Ships WALs to safe locations like a Backup Server or Cloud Storage like S3 or Object Store. 
▪ WALs are archived by archiver background process. 
▪ archive_command can be set with the appropriate shell command to archive WALs.  

▪ Lets enable Archiving now …   
 
ALTER SYSTEM SET listen_addresses TO '*'; 

ALTER SYSTEM SET archive_mode TO 'ON'; 

ALTER SYSTEM SET archive_command TO 'cp %p /archive/%f'; 
 
$ pg_ctl -D $PGDATA restart -mf 
 

Archived Logs and Why ?



© 2018 Percona 40

▪ Switch a WAL and see if the WAL is safely archived …  

$ psql -c "select pg_switch_wal()"

                Switch a WAL and see if an Archive is generated



© 2018 Percona 41

Reading Data from PostgreSQL



© 2018 Percona 42

▪ Database users are different from Operating System users. 

▪ Users can be created in SQL using CREATE USER command or using the createuser utility. 

▪ Database users are common for all the databases that exists in a cluster. 

▪ Roles are created to segregate privileges for access control. 

Users and Roles in PostgreSQL



© 2018 Percona 43

▪ Let us consider creating a read_only and a read_write role in database - percona.  

▪ A read_only Role that only has SELECT, USAGE privileges on Schema : percona 

▪ CREATE ROLE scott_read_only;  
GRANT SELECT ON ALL TABLES IN SCHEMA scott TO scott_read_only;  
GRANT USAGE ON SCHEMA scott TO scott_read_only;  

▪ A read_write Role that only has SELECT, INSERT, UPDATE, DELETE privileges on Schema : percona 

▪ CREATE ROLE scott_read_write;  
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA scott TO scott_read_write;  

▪ Create a User and assign either read_only or read_write role 

▪ CREATE USER pguser WITH LOGIN ENCRYPTED PASSWORD 'pg123pass';  
GRANT scott_read_only to pguser;  
 
ALTER USER pguser WITH CONNECTION LIMIT 20;

                      Users and Roles in PostgreSQL - Demo



© 2018 Percona 44

▪ PostgreSQL provides native backup tools for both Logical and Physical backups.  
▪ Backups similar to mysqldump and Xtrabackup are automatically included with Community PostgreSQL.  
▪ Backups like RMAN in Oracle may be achieved using Open Source tools like pgBackRest and pgBarman.  

▪ Logical Backups 
▪ pg_dump (Both Custom(Compressed and non human-readable) and Plain Backups) 
▪ pg_restore (To restore the custom backups taken using pg_dump) 
▪ Logical Backups cannot be used to setup Replication and perform a PITR. 
▪ You cannot apply WAL’s after restoring a Backup taken using pg_dump. 

▪ Physical Backups 
▪ pg_basebackup : File System Level & Online Backup, similar to Xtrabackup for MySQL. 
▪ Useful to build Replication and perform PITR. 
▪ This Backup can only use one process and cannot run in parallel.  
▪ Explore Open Source Backup tools like : pgBackRest, pgBarman and WAL-e for more features like 

Xtrabackup. 

Backups in PostgreSQL



© 2018 Percona 45

▪ Let’s use pgbench to create some sample tables  
 
$ pgbench -i percona  (Initialize) 
$ pgbench -T 10 -c 10 -j 2 percona (load some data) 

Use pg_dump to backup the DDL (schema-only) of database : percona 

$ pg_dump -s percona -f /tmp/percona_ddl.sql 

Use pg_dump to backup a table (with data) using custom and plain text format 
 
$ pg_dump -Fc —t public.pgbench_history -d percona -f /tmp/pgbench_history 
$ pg_dump -t public.pgbench_branches -d percona -f /tmp/pgbench_branches 

Create an another database and restore both the tables using pg_restore and psql  
 
$ psql -c “CREATE DATABASE testdb”  

  $ pg_restore -t pgbench_history -d testdb /tmp/pgbench_history 
  $ psql -d testdb -f /tmp/pgbench_branches

                 Try Logical Backup - pg_dump and pg_restore 



© 2018 Percona 46

▪ pg_dumpall 
▪ Can dump all the databases of a cluster into a script file. 
▪ Use psql to restore the backup taken using pg_dumpall. 
▪ Can be used to dump global objects such as ROLES and TABLESPACES. 

▪ To dump only Globals using pg_dumpall, use the following syntax.  
▪  $ pg_dumpall -g > /tmp/globals.sql 

▪ To dump all databases (or entire Cluster), use the following syntax.  
▪  $ pg_dumpall > /tmp/globals.sql 

 

                 pg_dumpall to backup GLOBALS or all Databases



© 2018 Percona 47

▪ Command line options for pg_basebackup 

$ pg_basebackup —-help 

-D     --> Target Location of Backup.  

-cfast -—> Issues a fast checkpoint to start the backup earlier  

-Ft    -—> Tar format. Use -Fp for plain 
 
-v     --> Print the Backup statistics/progress.  

-U     --> A User who has Replication Privilege.  

-W     --> forcefully ask for password of replication User above. (Not mandatory).  

-z     --> Compresses the Backup  
 
-R     --> Creates a recovery.conf file that can be used to setup replication  

-P     --> Shows the progress of the backup 
 
-l     --> Creates a backup_label file

         Try Physical/Binary/File System Level Backup - pg_basebackup



© 2018 Percona 48

▪ Run pg_basebackup now ….  

$ pg_basebackup -U postgres -p 5432 -h 127.0.0.1 -D /tmp/backup_11052018 -Ft -z -Xs -P -R 
-l backup_label 

 

             Use pg_basebackup to perform your first Full Backup



© 2018 Percona 49

▪ MVCC : Multi-Version Concurrency Control. 
▪ Maintains Data Consistency Internally. 
▪ Prevents transactions from viewing inconsistent data. 
▪ Readers do not block Writers and Writers do not block Readers.  
▪ MVCC controls which tuples can be visible to transactions via Versions. 
▪ Hidden Column xmin that has the transaction ID for every row.  
▪ UNDO is not maintained in a Separate UNDO Segment. UNDO is stored as Older Versions within the same 

Table.  
▪ Every Tuple has hidden columns => xmin and xmax that records the minimum and maximum transaction 

ids that are permitted to see the row.  
▪ xmin can be interpreted as the lowest transaction ID that can see this column. 

Just like SELECT statements executing WHERE xmin <= txid_current() AND (xmax = 0 OR txid_current() 
< xmax) 

▪ Dead rows are the rows that no active or future transaction would see.  
▪ Rows that got deleted would get their xmax with the txid that deleted them. 

MVCC in PostgreSQL



© 2018 Percona 50

▪ Describe the table : scott.employee using \d  
 
      percona=# \d scott.employee 

▪ Look for hidden columns using pg_attribute  
       
      SELECT attname, format_type (atttypid, atttypmod) 

FROM pg_attribute 
WHERE attrelid::regclass::text='scott.employee' 
ORDER BY attnum;

Hidden columns of a Table



© 2018 Percona 51

▪ xmin :  
▪ The transaction ID(xid) of the inserting transaction for this row version. Upon update, a new row version is 

inserted. 
 
percona=# select txid_current(); 
 txid_current 
-------------- 
          646 
(1 row) 
 
percona=# INSERT into scott.employee VALUES (3000,'avi'); 
INSERT 0 1 
 
percona=# select xmin,xmax,cmin,cmax,* from scott.employee where id = 3000; 
 xmin | xmax | cmin | cmax | id    | emp_name 
------+------+------+------+-------+------------ 

▪  647  |   0  |   0  |   0  |  3000 | avi      
(1 row) 

▪ This means that, already running transactions with txid less than 647 cannot see the row inserted by txid 647. 

Understanding xmin



© 2018 Percona 52

▪ xmax : 
▪ This values is 0 if it was not a deleted row version.  
▪ Before the DELETE is committed, the xmax of the row version changes to the ID of the transaction that has issued 

the DELETE. 

▪ Open 2 Terminals  
 
On Terminal 1 :  
 
$ psql -d percona  
 
   percona=# BEGIN; 
   percona=# select txid_current(); 
   percona=# DELETE from scott.employee where id = 9; 
 
On Terminal 2 :  
 
$ psql -d percona 
      
    Issue the following SQL before and after the delete on Terminal 1 and observe the difference 
 
      percona=# select xmin,xmax,cmin,cmax,* from scott.employee where id = 10;

Understanding xmax



© 2018 Percona 53

Understanding xmax



© 2018 Percona 54

▪ Due to continuous transactions in the databases and the number of dead rows, there exists a lot of space 
that can be re-used by future transactions.  

▪ Tuples that are deleted or updated generate dead tuples that are not physically deleted.  
      See view => pg_stat_user_tables  

▪ VACUUM in PostgreSQL would clear off the dead tuples and mark it to free space map so that the future 
transactions can re-use the space. 
 
       VACUUM percona.employee; 

▪ VACUUM FULL in PostgreSQL would rebuild the entire Table with explicit Locks, releasing the space to File 
System. Similar to ALTER TABLE in MySQL.  
 
       VACUUM FULL percona.employee; 

▪ Autovacuum in PostgreSQL automatically runs VACUUM on tables depending on the following parameters.  
autovacuum_vacuum_scale_factor and autovacuum_vacuum_threshold

Vacuum in PostgreSQL



© 2018 Percona 55

▪ ANALYZE collects statistics about the contents of tables in the database, and stores the results in the 
system catalogs. 

▪ The autovacuum daemon, takes care of automatic analyzing of tables when they are first loaded with data. 

▪ Accurate statistics will help the planner to choose the most appropriate query plan, and thereby improve 
the speed of query processing. 
 
        ANALYZE percona.employee; 

▪ Autovacuum Launcher Process runs an Analyze on a Table depending on the following parameters :  
autovacuum_analyze_scale_factor and autovacuum_analyze_threshold.  
 

ANALYZE in PostgreSQL



© 2018 Percona 56

Vacuum and Analyze in ACTION ..

▪ Check the size of table : scott.employee  
       
        \dt+ scott.employee 

▪ Check the number of live and dead tuples  
       
        SELECT relname, n_live_tup, n_dead_tup 

FROM pg_stat_user_tables 
WHERE relname = ‘employee’; 

▪ Delete some records and now check the dead tuples  
       
        DELETE FROM scott.employee WHERE id < 1000 ; 

▪ Check the number of live and dead tuples again ..  

▪ Run VACUUM ANALYZE and check the dead tuples  
       
        VACUUM ANALYZE scott.employee ; 

▪ Run VACUUM FULL and check the table size now  
       
        VACUUM FULL scott.employee ; 
        \dt+ scott.employee



© 2018 Percona 57



© 2018 Percona 58

Tablespaces in PostgreSQL

▪ Tablespaces 
▪ Can be used to move Table & Indexes to different disks/locations 
▪ Helps distributing IO. 

▪ Steps to create tablespace in PostgreSQL 

▪ Step 1 : Create a directory for the tablespace 
▪ $ mkdir -p /tmp/tblspc_1 
$ chown postgres:postgres /tmp/tblspc_1 
$ chmod 700 /tmp/tblspc_1 

▪ Step 2 : Create tablespace using the new directory 
▪ $ psql -c "CREATE TABLESPACE tblspc_1 LOCATION '/tmp/tblspc_1'"  

▪ Step 3 : Create a table in the new table-space 
▪ $ psql -d percona -c "CREATE TABLE scott.foo (id int) TABLESPACE tblspc_1" 



© 2018 Percona 59

▪ PostgreSQL supports several Index types such as :  

▪ B-tree Indexes 
▪ Hash Indexes 
▪ BRIN Indexes 
▪ GiST Indexes  
▪ GIN Indexes  
▪ Partial indexes or Functional Indexes

PostgreSQL Indexes



© 2018 Percona 60

▪ Partitioning until PostgreSQL 9.6 
▪ PostgreSQL supported Partitioning via Table Inheritance.  
▪ CHECK Constraints and Trigger Functions to re-direct Data to appropriate CHILD Tables. 
▪ Supports both RANGE and LIST Partitioning. 

▪ Declarative Partitioning since PostgreSQL 10 (Oracle and MySQL like Syntax) 
▪ Avoid the trigger based Partitioning and makes it easy and faster. 
▪ Uses internal C Functions instead of PostgreSQL Triggers. 
▪ Supports both RANGE and LIST Partitioning.  

  
▪ Advanced Partitioning from PostgreSQL 11 

▪ Supports default partitions 
▪ Hash Partitions  
▪ Parallel Partition scans 
▪ Foreign Keys 
▪ Optimizer Partition elimination

PostgreSQL Partitioning



© 2018 Percona 61

▪ Partitioning until PostgreSQL 9.6 
▪ PostgreSQL supported Partitioning via Table Inheritance.  
▪ CHECK Constraints and Trigger Functions to re-direct Data to appropriate CHILD Tables. 
▪ Supports both RANGE and LIST Partitioning. 

▪ Declarative Partitioning since PostgreSQL 10 (Oracle and MySQL like Syntax) 
▪ Avoid the trigger based Partitioning and makes it easy and faster. 
▪ Uses internal C Functions instead of PostgreSQL Triggers. 
▪ Supports both RANGE and LIST Partitioning.  

  
▪ Advanced Partitioning from PostgreSQL 11 

▪ Supports default partitions 
▪ Hash Partitions  
▪ Parallel Partition scans 
▪ Foreign Keys 
▪ Optimizer Partition elimination, etc

PostgreSQL Partitioning



© 2018 Percona 62

▪ Create a table and partition by RANGE 
 
CREATE TABLE scott.orders (id INT, order_time TIMESTAMP WITH TIME ZONE, description TEXT) PARTITION 
BY RANGE (order_time); 
 
ALTER TABLE scott.orders ADD PRIMARY KEY (id, order_time); 
 
CREATE TABLE scott.order_2018_01_04 PARTITION OF scott.orders 
    FOR VALUES FROM ('2018-01-01') TO ('2018-05-01'); 
 
CREATE TABLE scott.order_2018_05_08 PARTITION OF scott.orders 
    FOR VALUES FROM ('2018-05-01') TO ('2018-09-01'); 
 
CREATE TABLE scott.order_2018_09_12 PARTITION OF scott.orders 
    FOR VALUES FROM ('2018-09-01') TO ('2019-01-01'); 

▪ Insert values to the table  
 
INSERT INTO scott.orders (id, order_time, description)  
SELECT random() * 6, order_time, md5(order_time::text)  
FROM generate_series('2018-01-01'::date, CURRENT_TIMESTAMP, '1 hour') as order_time; 

                          PostgreSQL Declarative Partitioning



© 2018 Percona



© 2018 Percona 64

▪ Use EXPLAIN to see the Execution Plan of the following SELECT statement  
 
EXPLAIN SELECT id, order_time, description  

           FROM scott.orders  
           WHERE order_time between '2018-05-22 02:00:00' and '2018-05-28 02:00:00'; 

▪ Create Indexes on Partition Keys to ensure optimal performance  
 
CREATE INDEX order_idx_2018_01_04 ON scott.order_2018_01_04 (order_time); 
CREATE INDEX order_idx_2018_05_08 ON scott.order_2018_05_08 (order_time); 
CREATE INDEX order_idx_2018_09_12 ON scott.order_2018_09_12 (order_time);

                      PostgreSQL Declarative Partitioning - EXPLAIN



© 2018 Percona 65

▪ Before  

▪ After 

EXPLAIN - Before and After creating indexes on partition key



© 2018 Percona 66

▪ Streaming Replication for PostgreSQL 9.x and above 
▪ WAL Segments are streamed to Standby/Slave and replayed on Slave. 
▪ Not a Statement/Row/Mixed Replication like MySQL. 
▪ This can be referred to as a byte-by-byte or Storage Level Replication 
▪ Slaves are always Open for Read-Only SQLs but not Writes 
▪ You cannot have different Schema or Data in a Master and a Slave in Streaming Replication. 
▪ Allows Cascading Replication 
▪ Supports both Synchronous and Asynchronous Replication 
▪ Supports a Delayed Standby for faster PITR  

▪ Logical Replication and Logical Decoding for PostgreSQL 10 and above 
▪ Allows for Replication of selected Tables using Publisher and Subscriber Model. 
▪ Similar to binlog_do_db in MySQL, but no DDL Changes are replicated.  
▪ Subscribers are also open for Writes automatically 
▪ Used in Data Warehouse environments that stores Data fetched from multiple OLTP Databases for Reporting, etc.

PostgreSQL High Availability



© 2018 Percona 67

▪ Step 1 : Create a user in Master with REPLICATION ROLE. 
  
CREATE USER replicator 
WITH REPLICATION 
ENCRYPTED PASSWORD ‘replicator'; 

▪ Step 2 : Parameters you should know while setting up SR  
  
archive_mode : Must be set to ON to enable Archiving of WALs  
 
wal_level : Must be set to "hot_standy" until 9.5 and "replica" in the later versions. 
 
max_wal_senders : Must be set to 3 if you are starting with 1 Slave. For every Slave, you may add 2 
wal senders. 

wal_keep_segments : Number of WALs always retained in pg_xlog (Until PostgreSQL 9.6) or pg_wal 
(From PostgreSQL 10) 
 
archive_command : This parameter takes a shell command. It can be a simple copy command to copy the 
WAL segments to another location or a Script that has the logic to archive the WALs to S3 or a 
remote Backup Server. 
 
hot_standby : Must be set to ON on Standby/Replica and has no effect on the Master. However, when 
you setup your Replication, parameters set on Master are automatically copied. This parameter is 
important to enable READS on Slave. Else, you cannot run your SELECTS on Slave. 

                             PostgreSQL Streaming Replication (SR)



© 2018 Percona 68

▪ Step 3 : Set the parameters that are not set already 
  
ALTER SYSTEM SET wal_keep_segments TO '50'; 
select pg_reload_conf(); 

▪ Step 4 : Add an entry to pg_hba.conf of Master to allow Replication connections from Slave.  
              Default location of pg_hba.conf is the Data Directory.  

  
$ vi pg_hba.conf 

  
Add the following line between >>>>> and <<<<<< to the end of the pg_hba.conf file. 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
host replication replicator 192.168.0.28/32 md5 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 
Replace the IP address(192.168.0.28) with your Slave IP address 

▪ Step 5 : Give a SIGHUP or RELOAD 
  
$ pg_ctl -D $PGDATA reload 
 



© 2018 Percona 69

▪ Step 6 : Use pg_basebackup to backup of your Master data directory to the Slave data directory 
  
$ pg_basebackup -U replicator -p 5432 -D /slave -Fp -Xs -P -R  

▪ Step 7 : Change the port number of your slave if you are creating the replication in the same server for demo 
  
$ echo "port = 5433" >> /slave/postgresql.auto.conf  

▪ Step 8 : Start your Slave  
  
$ pg_ctl -D /slave start  

▪ Step 9 : Check the replication status from Master using the view : pg_stat_replication 
  
 select * from pg_stat_replication ; 



© 2018 Percona 70

                                              Questions ??


