dWS

All the dirt on VACUUM - Postgres 11

Jim Nasby, Sr. Database Engineer
PostgresConf US 2019

Intro

In-depth talk

But... here's some quick tips

aws

Intro

Postgres Multi-Version Concurrency Control is like a credit card

Every UPDATE, DELETE and ROLLBACK leaves “debt” that must be repaid

Not paying off credit cards leads to bankruptcy

Not vacuuming leads to a “death spiral”

aws

Intro

Vacuum is how this debt is repaid

You WANT vacuum running in your
database

aws

Intro

| LOVE vacuum! How can | get more of it?

aws

Intro

By default, autovacuum limited to 4MB/s write
Increase vacuum cost limit from 200 to 2000

Ensure maintenance work memis as close to 1GB as possible

aws

Heap Only Tuples

Applies when an update does not change any index values* and the new
tuple will fit on the same page

Allows for updating just the heap, without touching indexes
Dead HOT tuples can be removed at any time, without need for vacuum

HOT is like paying cash instead of using a credit card

See Grant McAlister’s talk from yesterday

aws

* Indexed values means any column referenced anywhere in an index,
including predicates and functions. See

src/backend/access/heap/README.HOT.

Intro

Beware of:

» Long-running transactions (including idle in transaction)
+ Prepared transactions (best to set max prepared transactions = 0)

» Stuck replicas

Targeted manual vacuums help a lot
» Vacuum small, frequently modified tables once a minute

+ Vacuum the entire instance once a day / week
(possibly with vacuum cost delay > 0)

aws

VACUUM

VACUUM FULL: completely rebuilds table and indexes
VACUUM FREEZE: sets freeze table age limits to O
VACUUM: regular manual vacuum

VACUUM ANALYZE: also runs analyze after vacuum
VACUUM VERBOSE: provides status and stats

See also vacuumdb shell command

Autovacuum: built-in background automatic vacuum process
aws

VACUUM FULL

Rebuilds table and indexes from scratch, similar to CLUSTER
Takes an exclusive lock on the table
Since it's a table rebuild, doesn't actually vacuum anything

https://aithub.com/reora/pa repack is another alternative

aws

10

vacuum ()

Can not be run in a transaction (or function/procedure)
For each table, call vacuum rel () (and analyze rel() if requested)

Update datfrozenxmin and datminmxid

aws

11

vacuum_rel ()

vacuum () > vacuum rel ()
Vacuums a single relation
Non-aggressive autovac will skip relation if locked

Does a bunch of mundane stuff then calls either cluster rel ()
(VACUUM FULL) or 1azy vacuum rel ()

If not autovac, call itself to vacuum the TOAST table

aws

12

lazy vacuum_rel ()

racuum () > vacuum rel () > lazy vacuum rel ()

Does the real work of vacuuming

aws

There was a bug in some old versions where relfrozenxid and relminmxid
were updated even if the whole table hadn't been scanned, potentially
resulting in data loss.

See vacuum_set_xid_limits()

13

Vacuum Process (lazy vacuum_rel())

Acquire locks, set limits

Loop through heap, possibly skipping pages
Per-page activity

Serially loop through all indexes

Remove dead tuples from heap

Vacuum FreeSpaceMap

Index cleanup

Attempt relation truncation

Update pg class info

aws

14

Vacuum Process (lazy vacuum_rel())

Acquire locks, set limits

Loop through heap, possibly skipping pages
Per-page activity

Serially loop through all indexes

Remove dead tuples from heap

Vacuum FreeSpaceMap

Index cleanup
Attempt relation truncation
Update pg class info

SETUP

MAIN LOOP

CLEANUP

aws

15

What tuples can be vacuumed?

Only rows that are not visible to currently running transactions
Generally* limited by the oldest running transaction in the database
Can be changed by c1d snapshot threshold

Streaming replication (vacuum defer cleanup age,

hot standby feedback), prepared transactions, and logical decoding

can also affect it

Special handling for current XIDs and locks

aws

See HeapTupleSatisfiesVacuum() for details.

16

What tuples can be vacuumed?

Time (or transaction IDs)

.,
BEGIN;
-- Go to lunch
Lots of UPDATEs and DELETEs
-—- Back from lunch
COMMIT;
——m—

Vacuum and HOT can't do
any cleanup here ...

BLOAT

adWs

See HeapTupleSatisfiesVacuum() for details.

17

What tuples can be vacuumed?

Very expensive SELECT

Lots of UPDATEs and DELETEs

Time (or transaction IDs)

seLECT finishes

aws

See HeapTupleSatisfiesVacuum() for details.

18

What tuples can be vacuumed?

Very expensive SELECT on a replica with hot standby feedback
Logical replica stops replaying

Lots of UPDATEs and DELETEs

Time (or transaction IDs)

seLECT finishes

aws

See HeapTupleSatisfiesVacuum() for details.

19

Setting limits: Freezing

Transaction ID (XID) and MultiXact ID (MXID) values are limited to 31
effective bits*

Allowing these values to roll over would result in data loss
Old values must be “frozen”
An “aggressive” vacuum is run when a table contains XIDs or MXIDs in need

of freezing, as determined by relfrozenxid and relminmxid in

pg class.

aws

XIDs and MXIDs are 32 bit unsigned values, but XIDs need to accommodate
transactions that are considered to be “in the future”, which means there
can't be more than 31 effective bits. MXIDs don't have a concept of “in the
future”, but are artificially limited to 31 bits.

20

Freezing

A non-aggressive vacuum can also freeze tuples

vacuum freeze min age* and vacuum multixact freeze min age
determine how old a XID/MXID must be to be considered for freezing

—

_4ag
(auto) vacuum multixact freeze table age determine whena
vacuum will become aggressive

aws

*_min_age are computed from the oldest running XID in the system.
*_table_age are computed from pg_class.relfrozenxid and
pg_class.relminmxid.

21

Freezing

Tuples will be frozen Tuples will not
be frozen
i . XIDs / time i .
“'_I ree ZC_t ab-o_aqo ""_I IOOZO_R’[J_D_&:C}O
| !
Age

aws

22

Freezing

Vacuum is aggressive

Vacuum is non-aggressive

XIDs / time

Age

* freeze min age

adWs

23

What is a MultiXact?

MultiXacts occur when multiple transaction IDs need to lock and invalidate
a tuple, most commonly due to updates on a Foreign Key parent.

Subtransactions (from savepoints & plpgsql EXCEPTION handlers) create
their own transaction IDs, so a single backend can create MultiXacts

aws

24

Vacuum Process (lazy vacuum_rel())

Loop through heap, possibly skipping blocks

Per-page activity

Serially loop through all indexes MAIN LOOP
Remove dead tuples from heap

Vacuum FreeSpaceMap

Index cleanup

Attempt relation truncation CLEANUP
Update pg class info

aws

25

Loop through heap, possibly skipping
blocks

for (blkno = 0; blkno < nblocks; blkno++)
nblocks is determined on entry to 1azy scan heap ().

Newer blocks will not be scanned.

adWs

26

Block skipping

Vacuum can skip blocks that are all-visible
An aggressive vacuum can skip blocks that are all-frozen

While reading heap, vacuum will skip blocks if at least 32 blocks would be
skipped

Skipping can be disabled by adding the DISABLE PAGE SKIPPING option
to VACUUM.

aws

27

Block skipping

4 heap blocks

([]]
Visibility Map \ \
4 all-frozen bits
4 all-visible bits Ug'g'g'y

aws

28

Block skipping

4 heap blocks

([]]
Visibility Map \ \
4 all-frozen bits A
4 all-visible bits aau

aws

29

Block skipping

64 heap blocks
HUNNNNNNEENNNENE UNNUNUNNUNEEED OGNEEEGANEEE RNNENNAANEEREN

All-visible bits
U S YUY S Y Y

aws

30

Block skipping

> 32 all-visible blocks; skip ahead
BUNNNNNNEENNNENE URNUNUNNUUEEED NOGNEEEGEREN YRNNENNAANEEEEN

All-visible bits
MU MM Y MYy U Y
J

aws

31

Block skipping

> 32 all-visible blocks; skip ahead =——

All-visible bits

All-frozen bits

L 0 A A AL A A COCOCACACOLOE AL B A A Ot ACACACACAACA AL A

An aggressive vacuum can not skip blocks that are not all-frozen

aws

32

Block skipping

> 32 all-visible blocks; skip ahead ————

All-visible bits
MU Y Y U

All-frozen bits

LA CACACACACACALACACACACALACACA COLACOCACALACACALOCOCOCOCAAALY CACACACE CACACACALAN - CRLACACA CALOAANA A A OO
]

By definition, blocks that are not all-visible must also not be all-frozen

aws

33

Vacuum Process (lazy vacuum_rel())

Per-page activity

Serially loop through all indexes
Remove dead tuples from heap
Vacuum FreeSpaceMap

Index cleanup
Attempt relation truncation
Update pg class info

MAIN LOOP

CLEANUP

aws

34

Per-page activity

+ Attempt to lock page
If aggressive vacuum and any tuples need freezing, wait for lock
« Perform HOT pruning (heap page prune())
« Scan items on page, deciding how to handle each tuple
+ Freeze items (if any)
+ If no indexes, vacuum page (lazy vacuum page ())
« Update visibility map if needed (all-visible & all-frozen)

aws

35

Locking

Vacuum requires a cleanup lock on a buffer (LockBufferForCleanup ())

Normally multiple backends can hold pins* on multiple buffers for a long
time

Vacuum needs exclusive access to the buffer

Non-aggressive vacuums skip any pages they can't lock

aws

Every time a backend takes a reference to a buffer, in gets a “pin”. See
src/backend/storage/buffer/README.

36

Vacuum Process (lazy vacuum_rel())

Serially loop through all indexes
Remove dead tuples from heap
Vacuum FreeSpaceMap

Index cleanup
Attempt relation truncation
Update pg class info

MAIN LOOP

CLEANUP

aws

37

Loop through all indexes

Index lookups can involve user-defined code
Postgres does not trust that for something as critical as vacuum
Lots of index probes could also be quite expensive

Instead of probing indexes as each tuple to be removed is discovered,
vacuum remembers each TuplelD

Each index method implements it's own routine for scanning the index,
checking each index tuple against the list of remembered heap TuplelDs

aws

38

Loop through all indexes

autovacuum work mem
maintenance work mem

Scan items on page

Find artofierthaplectbds e dxsvache vach uetadmberdtisb ¢ | TID |

aws

39

Loop through all indexes

autovacuum work mem
maintenance work mem

io| o rio [rio| o [T | -

TiofTiofTio| Tiof TiD | TID

aws

40

Loop through all indexes

For each index, scan through entire index checking each TID against the
list of remembered TIDs (1azy vacuum index())

Is TID 2300 in list?
Is TID 45 in list?
Is TID 301 in list?

TIDl TID l TID I TIDl TID | TID I

|TIDI TIDlTIDlTIDlTIDlTIDI

aws

41

Vacuum Process (lazy vacuum_rel())

Remove dead tuples from heap
Vacuum FreeSpaceMap

Index cleanup
Attempt relation truncation
Update pg class info

MAIN LOOP

CLEANUP

aws

42

Remove dead tuples from heap

lazy_vacuum_hcap()

Using the list of TIDs

* Go to each block with tuples to be vacuumed
* Remove the tuples from the block

* Repair page fragmentation

* Update visibility map

* Update FreeSpaceMap

aws

43

Vacuum FreeSpaceMap

Update non-leaf data in the FreeSpaceMap

aws

44

Vacuum Process (lazy vacuum_rel())

MAIN LOOP

* Index cleanup
+ Attempt relation truncation CLEANUP

* Update pg class info

aws

45

Vacuum Process (lazy vacuum_rel())

Loop through heap, possibly skipping blocks

Per-page activity

Serially loop through all indexes MAIN LOOP
Remove dead tuples from heap

Vacuum FreeSpaceMap

aws

46

Running out of memory for TIDs

autovacuum work mem
maintenance work mem

(values capped at 1GB, TIDs are 6 bytes)

TIDI TIDlTIDlTID'TIDlTIDI TIDlTIDITIDI TIDITIDlTIDI

TID

.o
N\

aws

47

Vacuum Process (lazy vacuum_rel())

Loop through heap, possibly skipping blocks
If about to run out of TID memory:
+» *Serially* loop through all indexes
+ Remove dead tuples from heap
% Vacuum FreeSpaceMap MAIN LOOP
Per-page activity
Serially loop through all indexes
Remove dead tuples from heap
Vacuum FreeSpaceMap

aws

48

Vacuum Process (lazy vacuum_rel())

+» *Serially* loop through all indexes
< Remove dead tuples from heap OUCH!
% Vacuum FreeSpaceMap

aws

49

Vacuum Process (lazy vacuum_rel())

* Index cleanup
+ Attempt relation truncation CLEANUP

* Update pg class info

aws

50

Index Cleanup
(lazy cleanup index())

Call index-specific cleanup method

For B-tree, simply cleans up index free space map

aws

51

Attempt Truncation

See if truncation would save enough space to be worth-while
(should attempt truncation())

* Must be at least 1,000 empty blocks

* Number of empty blocks must be >= 16% of heap

+ Truncation is not possible if 01d snapshot thresholdis set

Attempt truncation (lazy truncate heap())

1. Abort if new pages added since vacuum started

2. Try to exclusive-lock table (up to 5 seconds)

3. Scan backwards to find last non-empty page. If our lock is blocking
someone, go back to step 1

4. If pages were found, actually truncate relation

aws

52

Update pg classinfo
(vac update relstats())

If relpages, reltuples, relallvisible, relfrozenxid or
relminmxid have changed, then update them in pg class

If this is a vacuum (and not just an analyze), also update relhasindex,
relhasrules and relhastriggers

aws

53

Vacuum Process (lazy vacuum_rel())

aws

54

vac _update datfrozenxid()

vacuum () > vac _update datfrozenxid()

Update datfrozenxid and datminmxid in pg database
If new values for either:

+ Truncate Commit LOG files (pg xact/

* Update internal frozen XID and MXID info

MultiXact files (pg multixact) are truncated during checkpoint

aws

55

pg_stat progress vacuum

View "pg catalog.pg
Column

phase

heap blks
heap blks
heap blks
index wvacuum

total

scanned
vacuumed
count
max dead tuples

num dead tuples

aws

56

pPg _stat progress_ vacuum

View "pg catalog.pg stat progress vacuum

Column | Type Collation | Nullable

pid
datid
datname

relid

| Default

aws

57

Pg _stat progress_ vacuum

phase | text | |

aws

58

pg_stat progress vacuum

7 phases for a vacuum

initializing

scanning heap

vacuuming indexes MAIN LOOP
vacuuming heap

cleaning up indexes

truncating heap

performing final cleanup

adWs

59

pg_stat progress vacuum

Loop through heap, possibly skipping pages

Per-page activity

Serially loop through all indexes MAIN LOOP
Remove dead tuples from heap

Vacuum FreeSpaceMap

aws

60

pg _stat progress vacuum

Loop through heap, possibly skipping pages scanning heap
Per-page activity scanning heap
Serially loop through all indexes vacuuming indexes
Remove dead tuples from heap vacuuming heap
Vacuum FreeSpaceMap vacuuming heap

aws

61

Vacuum Process (lazy vacuum_rel())

Loop through heap, possibly skipping blocks

If about to run out of TID memory:
+» *Serially* loop through all indexes
+ Remove dead tuples from heap OUCH
% Vacuum FreeSpaceMap

Per-page activity

Serially loop through all indexes

Remove dead tuples from heap

Vacuum FreeSpaceMap

aws

62

Vacuum Process (lazy vacuum_rel())

Loop through heap, possibly skipping blocks
If about to run out of TID memory:
+» *Serially* loop through all indexes
+ Remove dead tuples from heap
% Vacuum FreeSpaceMap
Per-page activity
Serially loop through all indexes
Remove dead tuples from heap
Vacuum FreeSpaceMap

scanning heap
scanning heap
vacuuming indexes
vacuuming heap
vacuuming heap
scanning heap
vacuuming indexes
vacuuming heap
vacuuming heap

aws

63

Pg _stat progress vacuum

ap blks total t |

| bigin
scanned | bigint
| bigin

ap blks wvacuumed

aws

64

pg_stat progress vacuum

heap blks total | bigint # of blocks in table at start of vacuum
heap blks scanned bigint # of table blocks scanned
heap blks vacuumed | bigint # of table blocks vacuumed

aws

65

pPg _stat progress_ vacuum

heap blks total bigint
neap blks scanned bigint scanning heap
neap blks vacuumed bigint wvacuuming heap

adWs

66

pg_stat progress vacuum
index vacuum count bigint
of times indexes have been looped through (vacuuming indexes phase)

. . . 1 ‘A
If index vacuum count > 0 and phase = ‘scanning heap’

adWs

67

Pg _stat progress vacuum

aws

pg _stat progress vacuum

max dead tuples | bigint Size of array (max # of TIDs)
num dead tuples | bigint Number of
remembered TIDs

autovacuum work mem
main:onanco_wcrk_mem

|TIDITIDITIDITIDITID'TIDI |TIDITIDITIDI

aws

69

pg _stat progress vacuum

max dead tuples ~= num dead tuples

autovacuum work mem
main:onanco_wcrk_mem

|TIDITIDITIDITIDITID'TIDI |TIDITID|TIDITIDITIDI

aws

70

Autovacuum

Two parts: launcher & worker

aws

71

Autovacuum Launcher

Launcher wakes every autovacuum naptime seconds

Prioritizes databases by

* Most in need of XID freeze

* Most in need of MXID freeze

« Least recently autovacuumed, skipping any database less than
au:ovacuum_nap:ime agO

Multiple workers can work on a database
Check count of running autovacuums vs autovacuum max workers

On RDS check MaximumUsedTransactionIDs in CloudWatch

aws

72

Autovacuum Worker

Get list of heap tables & materialized views that need vacuum or analyze
Get list of TOAST tables that need vacuuming
TEMP tables are ignored (or removed)

List of tables is not prioritized in any fashion

aws

73

Autovacuum Worker

For each relation

« attempt to get lock

« skip if unavailable (unless freeze is needed)

* call vacuum (). vacuum () will terminate if it blocks another process,

unless aggressive.
Process work items (currently only BRIN summarize)

vac update datfrozenxid()

exit

aws

74

Vacuum Cost Delay

Well documented

Simple explanation: once (auto)vacuum cost limit is hit, sleep for
(auto) vacuum cost delay. Increasing _limit speeds vacuum,;
increasing delay slows vacuum.

Autovacuum default: 4-8MB/s

Don't slow vacuum too much

On systems where writing is cheaper than reading, set
vacuum_cost page dirty lower than vacuum cost page miss

aws

75

Adaptive Autovacuum

Makes autovacuum settings more aggressive when maximum transaction
ID age gets too high. Resets settings once age drops.

You can monitor via events on the instance.
Reduces risk of instance going read-only to prevent wraparound

Available in RDS Postgres 9.4+

aws

76

Death-spiral

Bankruptcy!
Need to
VACUUM

FULL or
pg_repack

Vacuum

falls farther
behind

2 2019, Amazon Web Services, Inc. or its Affiliates. All rights ress

Table,
Indexes
start small

Vacuum
can't keep
up

Table,

indexes get
bloated

aws

p—

77

