
WHY ISN'T MY QUERY USING  AN INDEX?

TIPS ON SQL PERFORMANCE TO KEEP ON YOUR FINGER TIPS!

DENISH PATEL

SENIOR DATABASE ARCHITECT



WHO AM I?

 Denish Patel

 Senior Database Architect

 Data Engineering – Hadoop, NiFi , Spark

 DBA – Postgres, Oracle, MySQL and SQL Server

 DevOps – Ansible, CI/CD, Git, Database Reliability Engineering

 Blog: http://www.pateldenish.com/

 Twitter: https://twitter.com/DenishPatel

 Slack: https://postgres-slack.herokuapp.com/

 Email: Denish.j.patel@gmail.com



AGENDA

 Postgres Query Execution Architecture

 How optimizer decides execution plan from choices?

 How to read query plans?

 Q/A



POSTGRES QUERY EXECUTION

User Libpq Postmaster

Postgres 

Server 

Process

1. Parser

• Semantic & privilege checking

• Spelling checking

2. Traffic Cop

• Simple and complex parsing 

3. Rewriter

• apply rules

4. Planner/Optimizer

• Generate plans

5. Execute plan generated by optimizer

Shared buffers WAL Buffers Optimizer

auto vacuum



PLANNER/OPTIMIZER

 The task of the planner/optimizer is to create an optimal execution plan. 

 Brain!

 The planner/optimizer starts by generating plans for scanning each individual relation 

(table) used in the query

 Available Indexes

 Sequential scan vs Index Scan

 Query required joining two or more tables

 Nested loop join

 Merge join

 Hash join



QUERY OPTIMIZATION

 Heuristic/Rules

 Rewrite the query to remove stupid/inefficient things

 Does not require a cost model

 Cost-Based Search

 Use a cost model to evaluate multiple plans and pick the one 

with the lowest cost



POSTGRES PLANNER/OPTIMIZER

 If the query uses less than geqo_threshold relations, a near-exhaustive 

search algorithm conducted to find the best join sequence. The default 

value is for this parameter in 12. 

 When geqo_threshold is exceeded, the join sequences considered are 

determined by heuristics search method– Genetic Algorithms (GA)



COST ESTIMATION

 How long will a query take?

 CPU : small cost; tough to estimate

 Disk : # of block transfers

 Memory : amount of DRAM used

 Network: # of messages

 How many tables will be read/written?

 What statistics to keep?



SAMPLE DATABASE – TRANSPORT STATS AIRLINES

Source: https://www.transtats.bts.gov/Tables.asp?DB_ID=120&DB_Name=Airline%20On-

Time%20Performance%20Data&DB_Short_Name=On-Time



SAMPLE DATABASE

 transport_stats=# select count(*) from carrier_on_time_performance;

Count

---------

5417325



STATISTICS

 Postgres stores internal statistics about tables, attributes and indices in internal 

catalog

 ANALYZE

 VACUUM ANALYZE

 Auto-vacuum analyze



STATISTICS



POSTGRES QUERY PLANS 

 Each query requires a Plan

 EXPLAIN is your friend!

 EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM X;

 Using ANALYZE will actually execute the query. Don’t worry you 

can rollback

 BEGIN;

 EXPLAIN ANALYZE UPDATE tablename WHERE X=y;

 ROLLBACK;



EXPLAIN ANALYZE



EXPLAINING EXPLAIN

Parallel Seq Scan on carrier_on_time_performance

(cost=0.00..131338.01 rows=119261 width=110) (actual time=0.858..5039.452 rows=97573 loops=3)

Cost of retrieving first 

row
Cost of retrieving all rows Number of rows returned Avg. width of rows (bytes) Number of times executed



EXPLAINING THE EXPLAIN

 The costs are measured in arbitrary units determined by the planner's cost 

parameters

 seq_page_cost - units of disk page fetches . Default is 1.0

 Random_page_cost

 cpu_tuple_cost (and others)

 Upper-level node includes the cost of all its child nodes

 Cost does not consider the time spent transmitting result

 Planning time does not include parsing or rewriting.

 Execution time - Time spent executing AFTER triggers is not counted



EXPLAINING EXPLAIN – LIMIT?

transport_stats=# explain analyze select * from public.carrier_on_time_performance where 

origin='BWI' and origin_state_abr='MD' limit 1;

QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------------

--

Limit  (cost=0.00..156.62 rows=1 width=110) (actual time=0.038..0.039 rows=1 loops=1)

->  Seq Scan on carrier_on_time_performance (cost=0.00..184345.88 rows=1177 width=110) (actual 

time=0.036..0.037 rows=1 loops=1)

Filter: ((origin = 'BWI'::text) AND (origin_state_abr = 'MD'::text))

Rows Removed by Filter: 59

Planning Time: 1.790 ms

Execution Time: 0.074 ms



LET’S CREATE INDEX



SCANS

 Sequential Scan

 Bitmap Scan

 Index Scan

 What is Re-check condition?



CARDINALITY

 Uniqueness of data values contained in a column

 High - percentage of totally unique values

 Low - repeat data

 Index on low cardinality does not help

transport_stats=# select origin_state_abr,count(*) from carrier_on_time_performance group by 1 order by 2 desc limit 3;

origin_state_abr | count

------------------+--------

CA               | 595402

TX               | 565602

FL               | 421752

(3 rows)



CARDINALITY



PARTIAL INDEX



ROW ESTIMATION

 Postgres keep tracks of histogram values for row estimation in pg_statistics table

 pg_stats view



HISTOGRAMS

 SELECT n_distinct, histogram_bounds FROM pg_stats WHERE tablename

='carrier_on_time_performance' AND attname='origin_airport_seq_id’;



DEFAULT_STATISTICS_TARGET



DEFAULT_STATISTICS_TARGET

 transport_stats=# alter table carrier_on_time_performance alter 

COLUMN origin_airport_id set statistics 1000;

 ALTER TABLE

 transport_stats=# alter table carrier_on_time_performance alter 

COLUMN origin_airport_id set statistics -1;

 ALTER TABLE



LET’S TALK ABOUT JOIN

 Nested Loop

 Hash Join

 Merge Join



NESTED LOOP



NETSTED LOOP

 Iterate all entries form “airports” and find relevant entries from “carrier_on_time_performance” table

 Emitting rows with WHERE clause (WHERE airport code='BWI’)

 Slower in performance (if index is not used)

 Make sure relevant index exist to match WHERE clause

 A nested loop is the only join algorithm Postgres has that can be used to process any join!



NETSTED LOOP – NO INDEX 



HASH JOIN



HASH JOIN

 Create a small hash table from large table

 The resulting hash table has to fit in memory

 If the table is really small, a nested loop is used

 Different index strategy: 

 Hash joins do not need indexes on the join predicates. They use the hash table instead.

 A hash join uses indexes only if the index supports the independent (any column but join 
column) predicates

 Reduce the hash table size to improve performance

 Horizontally (less rows) 

 Vertically (less columns) – avoid SELECT * FROM table

 Hash joins cannot perform joins that have range conditions in the join predicates



HASH JOIN



HASH JOIN 



MERGE JOIN



MERGE JOIN

 The MERGE join combines two sorted lists. 

 Both sides of the join must be sorted by the JOIN 

PREDICATES.

 Similar index strategy like HASH JOIN

 Make sure the index is sorted list



HINTS? - POSTGRESQL CONF PARAMETERS

 #enable_bitmapscan = on

 #enable_hashagg = on

 #enable_hashjoin = on

 #enable_indexscan = on

 #enable_indexonlyscan = on

 #enable_material = on

 #enable_mergejoin = on

 #enable_nestloop = on

 #enable_parallel_append = on

 #enable_seqscan = on

 #enable_sort = on



HTTPS://EXPLAIN.DEPESZ.COM/

 https://explain.depesz.com/

https://explain.depesz.com/


LET’S PRACTICE

 Find top 5 best performant carriers departing from  BWI airport

 Find top 5 best performance carries arriving to BWI



DEPARTING FROM BWI



QUERY STATS AFTER ADDING INDEX

 transport_stats=# create index on 

carrier_on_time_performance(origin,op_unique_carrier);

CREATE INDEX



REMOVE DISK SORT?



FIND TOP 5 BEST PERFORMANCE CARRIES ARRIVING TO BWI



ADD INDEX

 transport_stats=# create index on 

carrier_on_time_performance(dest,op_unique_carrier);



RESULTS

transport_stats=#  select origin,op_unique_carrier,c.description, count(*)

from carrier_on_time_performance perf

Left join carriers c on (perf.op_unique_carrier=c.code)

where dest='BWI'

group by 1,2,3

order by 4 desc limit 5;

origin | op_unique_carrier |      description       | count

--------+-------------------+------------------------+-------

ATL    | DL                | Delta Air Lines Inc.   |  2885

MCO    | WN                | Southwest Airlines Co. |  2522

FLL    | WN                | Southwest Airlines Co. |  2494

BOS    | WN                | Southwest Airlines Co. |  2457

TPA    | WN                | Southwest Airlines Co. |  1998

(5 rows)



TAKE AWAY …

 Keep the statistics updated

 Keep auto-vacuum turned ON

 Identify slow query postgres logs or pg_stat_statements

 EXPLAIN ANALYZE

 Review cardinality ,  histograms

 Try out different indices based on JOIN conditions

 B-tree

 Partial index

 Functional index



TAKE AWAY ..

 If possible, try to avoid selecting all columns 

 If query is not using index

 default_statistics_target

 Play with different session level settings to understand 

optimizer behavior

 i.e set enable_seqscan on;



THANK YOU!

 Thanks for attending!

 Looking forward to chat over Slack channel !

 https://postgres-slack.herokuapp.com/

https://postgres-slack.herokuapp.com/
https://postgres-slack.herokuapp.com/
https://postgres-slack.herokuapp.com/


QUESTIONS?

 Any question?

 Future questions:

 Denish.j.patel@gmail.com

 Slack channel

mailto:Denish.j.patel@gmail.com

