
WHY ISN'T MY QUERY USING AN INDEX?

TIPS ON SQL PERFORMANCE TO KEEP ON YOUR FINGER TIPS!

DENISH PATEL

SENIOR DATABASE ARCHITECT

WHO AM I?

 Denish Patel

 Senior Database Architect

 Data Engineering – Hadoop, NiFi , Spark

 DBA – Postgres, Oracle, MySQL and SQL Server

 DevOps – Ansible, CI/CD, Git, Database Reliability Engineering

 Blog: http://www.pateldenish.com/

 Twitter: https://twitter.com/DenishPatel

 Slack: https://postgres-slack.herokuapp.com/

 Email: Denish.j.patel@gmail.com

AGENDA

 Postgres Query Execution Architecture

 How optimizer decides execution plan from choices?

 How to read query plans?

 Q/A

POSTGRES QUERY EXECUTION

User Libpq Postmaster

Postgres

Server

Process

1. Parser

• Semantic & privilege checking

• Spelling checking

2. Traffic Cop

• Simple and complex parsing

3. Rewriter

• apply rules

4. Planner/Optimizer

• Generate plans

5. Execute plan generated by optimizer

Shared buffers WAL Buffers Optimizer

auto vacuum

PLANNER/OPTIMIZER

 The task of the planner/optimizer is to create an optimal execution plan.

 Brain!

 The planner/optimizer starts by generating plans for scanning each individual relation

(table) used in the query

 Available Indexes

 Sequential scan vs Index Scan

 Query required joining two or more tables

 Nested loop join

 Merge join

 Hash join

QUERY OPTIMIZATION

 Heuristic/Rules

 Rewrite the query to remove stupid/inefficient things

 Does not require a cost model

 Cost-Based Search

 Use a cost model to evaluate multiple plans and pick the one

with the lowest cost

POSTGRES PLANNER/OPTIMIZER

 If the query uses less than geqo_threshold relations, a near-exhaustive

search algorithm conducted to find the best join sequence. The default

value is for this parameter in 12.

 When geqo_threshold is exceeded, the join sequences considered are

determined by heuristics search method– Genetic Algorithms (GA)

COST ESTIMATION

 How long will a query take?

 CPU : small cost; tough to estimate

 Disk : # of block transfers

 Memory : amount of DRAM used

 Network: # of messages

 How many tables will be read/written?

 What statistics to keep?

SAMPLE DATABASE – TRANSPORT STATS AIRLINES

Source: https://www.transtats.bts.gov/Tables.asp?DB_ID=120&DB_Name=Airline%20On-

Time%20Performance%20Data&DB_Short_Name=On-Time

SAMPLE DATABASE

 transport_stats=# select count(*) from carrier_on_time_performance;

Count

5417325

STATISTICS

 Postgres stores internal statistics about tables, attributes and indices in internal

catalog

 ANALYZE

 VACUUM ANALYZE

 Auto-vacuum analyze

STATISTICS

POSTGRES QUERY PLANS

 Each query requires a Plan

 EXPLAIN is your friend!

 EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM X;

 Using ANALYZE will actually execute the query. Don’t worry you

can rollback

 BEGIN;

 EXPLAIN ANALYZE UPDATE tablename WHERE X=y;

 ROLLBACK;

EXPLAIN ANALYZE

EXPLAINING EXPLAIN

Parallel Seq Scan on carrier_on_time_performance

(cost=0.00..131338.01 rows=119261 width=110) (actual time=0.858..5039.452 rows=97573 loops=3)

Cost of retrieving first

row
Cost of retrieving all rows Number of rows returned Avg. width of rows (bytes) Number of times executed

EXPLAINING THE EXPLAIN

 The costs are measured in arbitrary units determined by the planner's cost

parameters

 seq_page_cost - units of disk page fetches . Default is 1.0

 Random_page_cost

 cpu_tuple_cost (and others)

 Upper-level node includes the cost of all its child nodes

 Cost does not consider the time spent transmitting result

 Planning time does not include parsing or rewriting.

 Execution time - Time spent executing AFTER triggers is not counted

EXPLAINING EXPLAIN – LIMIT?

transport_stats=# explain analyze select * from public.carrier_on_time_performance where

origin='BWI' and origin_state_abr='MD' limit 1;

QUERY PLAN

--

Limit (cost=0.00..156.62 rows=1 width=110) (actual time=0.038..0.039 rows=1 loops=1)

-> Seq Scan on carrier_on_time_performance (cost=0.00..184345.88 rows=1177 width=110) (actual

time=0.036..0.037 rows=1 loops=1)

Filter: ((origin = 'BWI'::text) AND (origin_state_abr = 'MD'::text))

Rows Removed by Filter: 59

Planning Time: 1.790 ms

Execution Time: 0.074 ms

LET’S CREATE INDEX

SCANS

 Sequential Scan

 Bitmap Scan

 Index Scan

 What is Re-check condition?

CARDINALITY

 Uniqueness of data values contained in a column

 High - percentage of totally unique values

 Low - repeat data

 Index on low cardinality does not help

transport_stats=# select origin_state_abr,count(*) from carrier_on_time_performance group by 1 order by 2 desc limit 3;

origin_state_abr | count

------------------+--------

CA | 595402

TX | 565602

FL | 421752

(3 rows)

CARDINALITY

PARTIAL INDEX

ROW ESTIMATION

 Postgres keep tracks of histogram values for row estimation in pg_statistics table

 pg_stats view

HISTOGRAMS

 SELECT n_distinct, histogram_bounds FROM pg_stats WHERE tablename

='carrier_on_time_performance' AND attname='origin_airport_seq_id’;

DEFAULT_STATISTICS_TARGET

DEFAULT_STATISTICS_TARGET

 transport_stats=# alter table carrier_on_time_performance alter

COLUMN origin_airport_id set statistics 1000;

 ALTER TABLE

 transport_stats=# alter table carrier_on_time_performance alter

COLUMN origin_airport_id set statistics -1;

 ALTER TABLE

LET’S TALK ABOUT JOIN

 Nested Loop

 Hash Join

 Merge Join

NESTED LOOP

NETSTED LOOP

 Iterate all entries form “airports” and find relevant entries from “carrier_on_time_performance” table

 Emitting rows with WHERE clause (WHERE airport code='BWI’)

 Slower in performance (if index is not used)

 Make sure relevant index exist to match WHERE clause

 A nested loop is the only join algorithm Postgres has that can be used to process any join!

NETSTED LOOP – NO INDEX

HASH JOIN

HASH JOIN

 Create a small hash table from large table

 The resulting hash table has to fit in memory

 If the table is really small, a nested loop is used

 Different index strategy:

 Hash joins do not need indexes on the join predicates. They use the hash table instead.

 A hash join uses indexes only if the index supports the independent (any column but join
column) predicates

 Reduce the hash table size to improve performance

 Horizontally (less rows)

 Vertically (less columns) – avoid SELECT * FROM table

 Hash joins cannot perform joins that have range conditions in the join predicates

HASH JOIN

HASH JOIN

MERGE JOIN

MERGE JOIN

 The MERGE join combines two sorted lists.

 Both sides of the join must be sorted by the JOIN

PREDICATES.

 Similar index strategy like HASH JOIN

 Make sure the index is sorted list

HINTS? - POSTGRESQL CONF PARAMETERS

 #enable_bitmapscan = on

 #enable_hashagg = on

 #enable_hashjoin = on

 #enable_indexscan = on

 #enable_indexonlyscan = on

 #enable_material = on

 #enable_mergejoin = on

 #enable_nestloop = on

 #enable_parallel_append = on

 #enable_seqscan = on

 #enable_sort = on

HTTPS://EXPLAIN.DEPESZ.COM/

 https://explain.depesz.com/

https://explain.depesz.com/

LET’S PRACTICE

 Find top 5 best performant carriers departing from BWI airport

 Find top 5 best performance carries arriving to BWI

DEPARTING FROM BWI

QUERY STATS AFTER ADDING INDEX

 transport_stats=# create index on

carrier_on_time_performance(origin,op_unique_carrier);

CREATE INDEX

REMOVE DISK SORT?

FIND TOP 5 BEST PERFORMANCE CARRIES ARRIVING TO BWI

ADD INDEX

 transport_stats=# create index on

carrier_on_time_performance(dest,op_unique_carrier);

RESULTS

transport_stats=# select origin,op_unique_carrier,c.description, count(*)

from carrier_on_time_performance perf

Left join carriers c on (perf.op_unique_carrier=c.code)

where dest='BWI'

group by 1,2,3

order by 4 desc limit 5;

origin | op_unique_carrier | description | count

--------+-------------------+------------------------+-------

ATL | DL | Delta Air Lines Inc. | 2885

MCO | WN | Southwest Airlines Co. | 2522

FLL | WN | Southwest Airlines Co. | 2494

BOS | WN | Southwest Airlines Co. | 2457

TPA | WN | Southwest Airlines Co. | 1998

(5 rows)

TAKE AWAY …

 Keep the statistics updated

 Keep auto-vacuum turned ON

 Identify slow query postgres logs or pg_stat_statements

 EXPLAIN ANALYZE

 Review cardinality , histograms

 Try out different indices based on JOIN conditions

 B-tree

 Partial index

 Functional index

TAKE AWAY ..

 If possible, try to avoid selecting all columns

 If query is not using index

 default_statistics_target

 Play with different session level settings to understand

optimizer behavior

 i.e set enable_seqscan on;

THANK YOU!

 Thanks for attending!

 Looking forward to chat over Slack channel !

 https://postgres-slack.herokuapp.com/

https://postgres-slack.herokuapp.com/
https://postgres-slack.herokuapp.com/
https://postgres-slack.herokuapp.com/

QUESTIONS?

 Any question?

 Future questions:

 Denish.j.patel@gmail.com

 Slack channel

mailto:Denish.j.patel@gmail.com

