
Temporal Journey
Bank-Builder

 2019 https://github.com/Bank-Builder/temporal_journey/

https://github.com/Bank-Builder/temporal_journey/

 Talk in
 Two Parts
 - Getting to UTC
 - PSQL Used
 <@
 - Final Word

Part I:
Getting
to UTC

This talk flies by because it is so interesting to listen to,
but the speed of rotation of all the astronomical bodies
including the earth has apparently not changed.

For that bored person in the 3rd row however,
the world seems to have slowed, painfully, right down!

time zones - which exist because of planetary rotation wrt an external solar
reference, and taken together with geo-location or latitude on our familiar ball,
we then apply convention for convenience and throw in politics & habit so we
can add inconvenient consequences such as daylight savings & international
date lines etc.

astronomical units - such as rotations around an axis or rotations around the
sun, days, seasons, years, heavenly orbits & epochs

i.e. it rotates around the Sun in 224.65 Earth-
days and around its own axis in 116.75 Earth
days.
Put another way, it rotates around it's own axis in
1 Venus-day and around the Sun (a Venus year)
in 1.92 Venus-days.

Venus has a day that is about half a year long.

An epoch is a significant time marker.

Lisp used 0-time to be 1900-01-01 00:00:00 UTC and Unix uses 1970-01-
01 00:00:00 UTC,
and simply keep a continuous count of seconds
(as does postgreSQL).

Go, Python and .NET utilise Rata Die (R.D.)
<from Latin for "fixed-date">

The civil calender used by most countries is the Gregorian solar calendar,
named after Pope Gregory XIII, who introduced it in October 1582, which has
365.2425 days in a year and caters for leap years.

This is a very close approximation for the
actual 365.2422 days in a tropical year that
is currently determined by the Earth's
actual revolution around the Sun.

Every year that is exactly divisible by four is a leap year,
except for years that are exactly divisible by 100 - which are not,
except for when these centennial years are exactly divisible by 400 - then they are.

For example, the years 1700, 1800, and 1900 were not leap years,
but the year 2000 was and the 2100 wont be.

Leap Years

so..may you never
have to
do this in your code
…

However, people tend to prefer words to
numbers, and go out of their way to name things
such as:
 months &
 days of week &
 times of day etc.
This also creates convention chaos
e.g. mm/dd/yy versus dd/mm/CCyy

or worse just mm/dd which
ls -l
uses by default, so you probably want to do
something like:
ls -l --time-style=+%C%y/%m/%d

“2019-03-11T11:10:30,5+02:00”
which is
[unambiguous date]T[time with fractional seconds][+-UTC timezone]

Language Neutral Notation
such as ISO 8601
solves the problems of convention chaos
with painful verbosity

International Date Line (IDL)

at 180 deg (-24 hrs west to east), and for our
pleasure the time-zone zigzags to take into account
countries and geopolitical regions - so it is possible
to cross the IDL from Baker Island to Tokelau (just
1061km) and have to add 25 hrs forward = 1 day + 1
hr because of time zigzags across time-zones.

On our planet everyday between 10:00 and 11:59 UTC
there are three different dates on the calender in use.

 10:30 UTC it is 2nd May
 23:30 UTC-11 (American Samoa) it is May 1st
 06:30 UTC-4 (New York) it is May 2nd, and
 00:30 UTC+14 it is May 3rd (Kiritimati is always the
 first country to celebrate New Year)

...whatever time zone you use, every day there is a time
when you're only a second away from tomorrow...

timedatectl

 Local time: Mon 2019-01-07 18:42:55 SAST
 Universal time: Mon 2019-01-07 16:42:55 UTC
 RTC time: Mon 2019-01-07 16:42:55
 Time zone: Africa/Johannesburg (SAST, +0200)

 System clock synchronized: yes
 systemd-timesyncd.service active: yes
 RTC in local TZ: no

timedatectl list-timezones
sudo timedatectl set-timezone Africa/Johannesburgsystemd

It seems that we simply
cannot get away from time

 or
is it that time keeps

getting away from us?

Part II:
PSQL Used

TEMPORAL TABLES

 git clone git@github.com:GrindrodBank/temporal_tables.git
 add versioning_function.sql to db
 CREATE TABLE <my_table>
 ALTER <my_table> to add “sys_period” column
 CREATE TABLE <my_table>_history (LIKE <my_table>);
 add the versioning_trigger using the versioning_function

 Now go ahead and insert, update
 & delete and see what happens

mailto:git@github.com

LOGICAL REPLICATION

• SET wal_level=logical
• CREATE ROLE for REPLICATION
• GRANT read access to the replication user
• CREATE PUBLICATION FOR <my_table>
• Do this for each micro-service schema for all tables

On the canonical database :
CREATE SUBSCRIPTION(s) with CONNECTION(s) to
PUBLICATION(s)

Explicitly ENABLE ALWAYS TRIGGER versioning_trigger
for logical replication to trigger temporal table events, even
if they will trigger without this for local DML events.

BI-TEMPORAL DATA

● Validity vs Audit
● ADD COLUMN of type

 daterange
● ADD && CONSTRAINT
● POPULATE validity_period

BI-TEMPORAL QUERIES

Range queries
&&, -|-, >>, &<
Daterange ‘[)’ vs ‘[]’

“The world doesn't make sense
 until you force it to.” - Bruce Wayne

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

