
Performant Continuously Up to
Date Materialized Aggregates

David Kohn
Solutions Architect / Software Engineer, Timescale

david@timescale.com · github.com/timescale

A Use Case: Stock Trades

SELECT time_bucket('15 min', trade_time),
 symbol,
 first(price, trade_time) as open,
 max(price) as high,
 min(price) as low,
 last(price, trade_time) as close,
 sum(num_shares) as total_volume
FROM trade_data
WHERE trade_time > now() - '30 days'::interval
GROUP BY time_bucket('15 min', trade_time), symbol
ORDER BY time_bucket('15 min', trade_time) DESC;

Typical OHLC Query

Typical OHLC Query

How do we make it into an
interactive dashboard?

Let’s try a Materialized View:
CREATE MATERIALIZED VIEW ohlc AS
SELECT time_bucket('15 min', trade_time),
 symbol,
 first(price, trade_time) as open,
 max(price) as high,
 min(price) as low,
 last(price, trade_time) as close,
 sum(num_shares) as total_volume
FROM trade_data
GROUP BY time_bucket('15 min', trade_time), symbol;

But…
• Need to run REFRESH MATERIALIZED VIEW manually or it will

quickly be out of date.

• Recalculates the entire view on every refresh

• Will REFRESH CONCURRENTLY help?

• Very inefficient for insert-mostly, time-ordered workloads

What about triggers?

raw
data in

15 min
trigger

What about triggers?

raw
data in

15 min

trigger

1 day

trigger

• Triggers can keep materializations up to date

• But they cause write amplification every row inserted (or updated/
deleted) means a modification to each materialization a.k.a.

• Triggers can cause lock conflicts that further slow writes

What about triggers?

The data industry is undergoing a  
generational shift

1970s-1990s
The relational database era
for transactional processing

Oracle, DB2, SQL Server

2000s-2010s
The big data and non-
relational era for analytics

Hadoop, Cassandra, MongoDB

The Rise of Machine Data

44ZB
data collected from IoT devices
by 2020 (IDC)

71%
of global businesses now
collecting IoT data (451 Research)

75%
of IoT data goes unused today
by 92% of businesses (Verizon)

25GB
data collected per hour by
connected cars (McKinsey)

Time-series
• Primarily UPDATEs

• Writes randomly distributed

• Transactions to multiple  
 primary keys

• Primarily INSERTs

• Writes to recent time interval

• Writes primarily associated  
 with a timestamp

OLTP

Okay, okay, how about a cron job?

Already Materialized Data Next
15 Min

Inserting
Here

cron job
15 min

Okay, okay, how about a cron job?

Already Materialized Data Last
15 Min

Inserting
Here

wait 15 min…

• Deals with most inserts as they are usually to the most recent period

• Reduced write amplification because aggregates are computed
once per period

• BUT… what about late writes? Deletes? Updates?

• Synchronization issues often arise

Okay, okay, how about a cron job?

Enter TimescaleDB

Query Planner

Time-Series Queries Standard SQL Queries

Storage Layer

Data Management

The Extensibility of PostgreSQL

9.6, 10, 11, …

Time-space partitioning 
(for both scaling up & out)

Chunk (sub-table)

Space

Time 
(older)

(hash partitioning)

Chunks should be “right-sized”

Recent (hot) chunks fit in memory

Chunks

Hypertable

Automatic Space-time Partitioning

Continuous aggregates

TimescaleDB Continuous Aggregates

raw

data in scheduled
aggregation

15 min

invalidation
events

log

TimescaleDB Continuous Aggregates

Materialized Data Next
15 Min

Inserting
Here

scheduled
aggregation

15 min

TimescaleDB Continuous Aggregates

invalidation
events

log scheduled
aggregation

15 min

Non
Materialized

Data

Materialized Data Next
15 Min

Inserting
Here

• Designed for high volume, mostly ordered, insert-mostly workloads

• Minimal write amplification, while maintaining correctness

• None for writes more recent than threshold

• One row per-statement invalidation overhead older than threshold

• Meticulously avoid locking issues using PG transactional guarantees

• Maintained consistently without user intervention

TimescaleDB Continuous Aggregates

CREATE VIEW ohlc_continuous
WITH (timescaledb.continuous)
AS SELECT time_bucket('15 min', trade_time),
 symbol,
 first(price, trade_time) as open,
 max(price) as high,
 min(price) as low,
 last(price, trade_time) as close,
 sum(num_shares) as total_volume
FROM trade_data
GROUP BY time_bucket('15 min', trade_time), symbol;

TimescaleDB Continuous Aggregates

Single View Across Aggregated & Raw DataCom
ing

 Soo
n!

raw15 min

SELECT * FROM ohlc_continuous;

Vision: Materialized View as an IndexIn
Dev

elo
pm

en
t

SELECT symbol,
max(price) as max_price

FROM trade_data
GROUP BY symbol;

SELECT symbol,
max(high) as max_price

FROM ohlc_continuous
GROUP BY symbol;

• Why should your app need to know that the view exists?

• Indexes are transparent, why can’t a materialization be?

CREATE VIEW ohlc_continuous
WITH (timescaledb.continuous)
AS SELECT time_bucket('15 min', trade_time),
 symbol,
 first(price, trade_time) as open,
 max(price) as high,
 min(price) as low,
 last(price, trade_time) as close,
 sum(num_shares) as total_volume,
 avg(price) as avg_price
FROM trade_data
GROUP BY time_bucket('15 min', trade_time), symbol;

The Problem With Average

Partial Aggregation
• Example: for average store the sum and the count

• Combine by summing each of them

• Finalize by dividing the sum by the count.

• All parallelizable aggregates Postgres must have partial aggregation, combine and
finalize functions defined

• Instead of storing the final state of the aggregate, we store partials and then combine

and finalize at run time

SELECT time_bucket('2 hours', trade_time),
 symbol,
 avg(avg_price) as avg_price
FROM ohlc_continuous
GROUP BY time_bucket(‘2 hours', trade_time), symbol;

Re-Grouping

SELECT time_bucket('15 min', trade_time),
 avg(avg_price) as avg_price
FROM ohlc_continuous
GROUP BY time_bucket('15 min', trade_time);

SELECT time_bucket_regroup('2 hours', trade_time),
 symbol,
 avg(avg_price) as avg_price
FROM ohlc_continuous
GROUP BY time_bucket_regroup(‘2 hours', trade_time), symbol;

Re-Grouping With Exact Results

SELECT time_bucket_regroup('15 min', trade_time),
 avg(avg_price) as avg_price
FROM ohlc_continuous
GROUP BY time_bucket_regroup('15 min', trade_time);

In
Dev

elo
pm

en
t

Data RetentionCom
ing

 Soo
n!

Granularity
Retention

raw
2 weeks

15 min
3 years

Powerful database automation

• Data reordering policies

• Data retention policies

• Data archival policies

• Data tiering policies

• Continuous aggregation policies

Automated data retention

 SELECT add_drop_chunks_policy(hypertable, interval);

 SELECT drop_chunks(hypertable, interval);

Automated data reordering

add_reorder_policy(hypertable, index);

reorder_chunk(hypertable, index);

https://github.com/timescale/mta-timescale

=> SELECT * FROM mta WHERE route_id = 'B39';
Heap Blocks: exact=20173; Execution Time: 12099 ms

=> SELECT reorder_chunk(…,'idx_mta_route');

=> SELECT * FROM mta WHERE route_id = 'B39';
Heap Blocks: exact=250; Execution Time: 3.690 ms

Automated data reordering

Automated data tiering

 SELECT add_migrate_chunks_policy(hypertable, interval, to, from);

EBSEBS EBS

Tim
es

ca
leD

B 1.
5+

 SELECT migrate_chunks(hypertable, interval, to, from);

Source code
• github.com/timescale/timescaledb

Join the Community
• slack.timescale.com

timescale.com/cloud-promo

TimescaleDB scale-out clusteringIn
Dev

elo
pm

en
t

“Front-end”
TimescaleDB

“Back-end”
TimescaleDB

Cluster-wide
catalog info,  

server → chunks

Local
catalog info

Under Development

TimescaleDB scale-out clustering

2PC

Writes

In
Dev

elo
pm

en
t

Modified FDW

Under Development

TimescaleDB scale-out clustering
Reads

Query planning +
constraint exclusion

In
Dev

elo
pm

en
t

Under Development

TimescaleDB scale-out clustering
Reads

Query planning +
constraint exclusion

Writes

In
Dev

elo
pm

en
t

Under Development

Preliminary benchmarksIn
Dev

elo
pm

en
t

8 data servers,
unreplicated

850K rows/s
8.5M metrics/s

8 data servers,
2-way replicated

700K rows/s
7M metrics/s

AWS m5.12xlarge, EBS storage

Writes

vs. PostgreSQL

20x Higher Inserts
Speedup

Table scans, simple
column rollups 0-20%

GROUPBYs 20-200%

Time-ordered
GROUPBYs 400-10000x

DELETEs 2000x

Faster
Queries

