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A Use Case: Stock Trades





SELECT time_bucket('15 min', trade_time),  
 symbol,  
 first(price, trade_time) as open,  
 max(price) as high,  
 min(price) as low,  
 last(price, trade_time) as close,  
 sum(num_shares) as total_volume  
FROM trade_data  
WHERE trade_time > now() - '30 days'::interval 
GROUP BY time_bucket('15 min', trade_time), symbol 
ORDER BY time_bucket('15 min', trade_time) DESC;

Typical OHLC Query



Typical OHLC Query



How do we make it into an 
interactive dashboard?



Let’s try a Materialized View:
CREATE MATERIALIZED VIEW ohlc AS 
SELECT time_bucket('15 min', trade_time),  
 symbol,  
 first(price, trade_time) as open,  
 max(price) as high,  
 min(price) as low,  
 last(price, trade_time) as close,  
 sum(num_shares) as total_volume  
FROM trade_data  
GROUP BY time_bucket('15 min', trade_time), symbol;



But…
•  Need to run REFRESH MATERIALIZED VIEW manually or it will 

quickly be out of date. 

•  Recalculates the entire view on every refresh 

• Will REFRESH CONCURRENTLY help?  

• Very inefficient for insert-mostly, time-ordered workloads 



What about triggers?
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• Triggers can keep materializations up to date 

• But they cause write amplification every row inserted (or updated/
deleted) means a modification to each materialization a.k.a.

• Triggers can cause lock conflicts that further slow writes

What about triggers?



The data industry is undergoing a  
generational shift



1970s-1990s 
The relational database era 
for transactional processing

Oracle, DB2, SQL Server



2000s-2010s 
The big data and non-
relational era for analytics

Hadoop, Cassandra, MongoDB



The Rise of Machine Data

44ZB
data collected from IoT devices
by 2020 (IDC)

71%
of global businesses now
collecting IoT data (451 Research)

75%
of IoT data goes unused today
by 92% of businesses (Verizon)

25GB
data collected per hour by
connected cars (McKinsey)



Time-series
•   Primarily UPDATEs 

•   Writes randomly distributed 

•   Transactions to multiple  
  primary keys

•    Primarily INSERTs 

•    Writes to recent time interval 

•    Writes primarily associated  
   with a timestamp

OLTP



Okay, okay, how about a cron job?
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Okay, okay, how about a cron job?

Already Materialized Data Last   
15 Min

Inserting 
Here

wait 15 min… 



• Deals with most inserts as they are usually to the most recent period 

• Reduced write amplification because aggregates are computed 
once per period

• BUT… what about late writes? Deletes? Updates?  

• Synchronization issues often arise 

Okay, okay, how about a cron job? 



Enter TimescaleDB



Query Planner

Time-Series Queries Standard SQL Queries

Storage Layer

Data Management

The Extensibility of PostgreSQL

9.6, 10, 11, …



Time-space partitioning 
(for both scaling up & out)

Chunk (sub-table)

Space

Time 
(older)

(hash partitioning)



Chunks should be “right-sized”

Recent (hot) chunks fit in memory



Chunks

Hypertable

Automatic Space-time Partitioning



Continuous aggregates



TimescaleDB Continuous Aggregates

raw

data in scheduled 
aggregation 

15 min

invalidation 
events

log



TimescaleDB Continuous Aggregates
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TimescaleDB Continuous Aggregates

invalidation 
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aggregation 

15 min

Non 
Materialized 

Data

Materialized Data Next  
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Inserting 
Here



• Designed for high volume, mostly ordered, insert-mostly workloads 

• Minimal write amplification, while maintaining correctness 

• None for writes more recent than threshold 

• One row per-statement invalidation overhead older than threshold 

• Meticulously avoid locking issues using PG transactional guarantees

• Maintained consistently without user intervention

TimescaleDB Continuous Aggregates



CREATE VIEW ohlc_continuous 
WITH (timescaledb.continuous) 
AS SELECT time_bucket('15 min', trade_time),  
 symbol,  
 first(price, trade_time) as open,  
 max(price) as high,  
 min(price) as low,  
 last(price, trade_time) as close,  
 sum(num_shares) as total_volume  
FROM trade_data  
GROUP BY time_bucket('15 min', trade_time), symbol;

TimescaleDB Continuous Aggregates



Single View Across Aggregated & Raw DataCom
ing

 Soo
n!

raw15 min

SELECT * FROM ohlc_continuous;



Vision: Materialized View as an IndexIn 
Dev

elo
pm

en
t

SELECT symbol,  
max(price) as max_price  

FROM trade_data  
GROUP BY symbol;

SELECT symbol,  
max(high) as max_price  

FROM ohlc_continuous  
GROUP BY symbol;

• Why should your app need to know that the view exists? 

• Indexes are transparent, why can’t a materialization be?  



CREATE VIEW ohlc_continuous 
WITH (timescaledb.continuous) 
AS SELECT time_bucket('15 min', trade_time),  
 symbol,  
 first(price, trade_time) as open,  
 max(price) as high,  
 min(price) as low,  
 last(price, trade_time) as close,  
 sum(num_shares) as total_volume,  
 avg(price) as avg_price 
FROM trade_data  
GROUP BY time_bucket('15 min', trade_time), symbol;

The Problem With Average



Partial Aggregation
• Example: for average store the sum and the count  

• Combine by summing each of them 

• Finalize by dividing the sum by the count.  

• All parallelizable aggregates Postgres must have partial aggregation, combine and 
finalize functions defined 

• Instead of storing the final state of the aggregate, we store partials and then combine 

and finalize at run time



SELECT time_bucket('2 hours', trade_time),  
 symbol,  
 avg(avg_price) as avg_price 
FROM ohlc_continuous  
GROUP BY time_bucket(‘2 hours', trade_time), symbol;

Re-Grouping

SELECT time_bucket('15 min', trade_time),  
 avg(avg_price) as avg_price 
FROM ohlc_continuous  
GROUP BY time_bucket('15 min', trade_time);



SELECT time_bucket_regroup('2 hours', trade_time),  
 symbol,  
 avg(avg_price) as avg_price 
FROM ohlc_continuous  
GROUP BY time_bucket_regroup(‘2 hours', trade_time), symbol;

Re-Grouping With Exact Results

SELECT time_bucket_regroup('15 min', trade_time),  
 avg(avg_price) as avg_price 
FROM ohlc_continuous  
GROUP BY time_bucket_regroup('15 min', trade_time);

In 
Dev

elo
pm

en
t



Data RetentionCom
ing

 Soo
n!

Granularity
Retention

raw
2 weeks

15 min
3 years



Powerful database automation

• Data reordering policies

• Data retention policies

• Data archival policies

• Data tiering policies

• Continuous aggregation policies



Automated data retention

 SELECT add_drop_chunks_policy(hypertable, interval);

 SELECT drop_chunks(hypertable, interval);



Automated data reordering

add_reorder_policy(hypertable, index);

reorder_chunk(hypertable, index);



https://github.com/timescale/mta-timescale

=> SELECT * FROM mta WHERE route_id = 'B39';
Heap Blocks: exact=20173;  Execution Time: 12099 ms

=> SELECT reorder_chunk(…,'idx_mta_route');

=> SELECT * FROM mta WHERE route_id = 'B39';
Heap Blocks: exact=250;  Execution Time: 3.690 ms

Automated data reordering



Automated data tiering

 SELECT add_migrate_chunks_policy(hypertable, interval, to, from);

EBSEBS EBS

Tim
es

ca
leD

B 1.
5+

 SELECT migrate_chunks(hypertable, interval, to, from);



Source code
• github.com/timescale/timescaledb 

Join the Community
• slack.timescale.com  



timescale.com/cloud-promo





TimescaleDB scale-out clusteringIn 
Dev

elo
pm

en
t

“Front-end” 
TimescaleDB

“Back-end” 
TimescaleDB

Cluster-wide
catalog info,  

server → chunks

Local
catalog info



Under Development

TimescaleDB scale-out clustering

2PC

Writes

In 
Dev
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t

Modified FDW



Under Development

TimescaleDB scale-out clustering
Reads

Query planning + 
constraint exclusion
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Under Development

TimescaleDB scale-out clustering
Reads

Query planning + 
constraint exclusion

Writes
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Under Development

Preliminary benchmarksIn 
Dev

elo
pm

en
t

8 data servers,
unreplicated

850K rows/s
8.5M metrics/s

8 data servers,
2-way replicated

700K rows/s
7M metrics/s

AWS m5.12xlarge, EBS storage

Writes



vs. PostgreSQL

20x Higher Inserts
Speedup

Table scans, simple 
column rollups 0-20%

GROUPBYs 20-200%

Time-ordered 
GROUPBYs 400-10000x

DELETEs 2000x

Faster 
Queries


