
PostgreSQL V12
●

Participate

Your
Speaker

 Joshua D. Drake (JD)
 Founder United States PostgreSQL
 Founder Command Prompt, Inc.

– https://postgresconf.org/

 Postgres Conference Co-Chair (Vision and Purpose)

– https://postgresconf.org/

 in/postgres

https://postgresconf.org/
https://postgresconf.org/

Your Next
Conference

V12 We will be discussing V12 major Features as well as
Migration considerations!

Partitioning

● V10 brought about partitioning (with Syntax)

● V11 brought:
– Primary keys

– Foreign Keys (To foreign tables)

– Auto Indexing

– Default partitions

– Better aggregation planning

● V12 brings:
– Efficient planning for thousands of partitions

– Foreign Keys (To a child partition)

– Improved Copy into Partitions

– Partitions boundaries now support expressions

– Functions for investigating partitions

Partitioning
Functions

● pg_partition_root()
– returns the top-most parent of a partition tree

● pg_partition_ancestors()
– reports all ancestors of a partition

● pg_partition_tree()
– displays information about the partitions

JSON

● PostgreSQL V12 now support JSON ‘PATH’, the SQL
standard JSON language
– More information:

● https://www.postgresql.org/docs/12/functions-
json.html#FUNCTIONS-SQLJSON-PATH

● Also check out Zson
– https://github.com/postgrespro/zson

Generated
Columns

● GENERATED ALWAYS AS (generation_expr) STORED
● This clause creates the column as a generated column.
● The keyword STORED is required to signify that the column will

be computed on write and will be stored on disk.
● The generation expression can refer to other columns in the

table, but not other generated columns. Any functions and
operators used must be immutable.

CREATE TABLE (one int4, two int4 GENERATED ALWAYS AS (one * 5)
STORED);

CREATE TABLE foo (created_date date, expiration_date date
GENERATED ALWAYS AS (created_date + '30 days'::interval)
STORED);

Btree

● A reduction in multi-column index size

● Better performance with indexes that contain many
duplicates

● Increased efficiency of Vacuum on indexes with
many duplicates

● Locking requirements have been reduced on index
updates

● INSERTS are now faster with BTREE indexes due to
a reduction in locking overhead

Most-
Common-
Value
Statistics

CREATE STATISTICS stts3 (mcv) ON state, city FROM zipcodes;

ANALYZE zipcodes;

SELECT m.* FROM pg_statistic_ext,
pg_mcv_list_items(stxmcv) m WHERE stxname = ’stts3’;

index | values | nulls | frequency | base_frequency
-------+-----------------------------+-------+-----------+
0 | {Washington, DC} | {f,f} | 0.003467 | 2.7e-05
1 | {Apo, AE} | {f,f} | 0.003067 | 1.9e-05
2 | {Houston, TX} | {f,f} | 0.002167 | 0.000133
3 | {El Paso, TX} | {f,f} | 0.002 | 0.000113
4 | {New York, NY} | {f,f} | 0.001967 | 0.000114
5 | {Atlanta, GA} | {f,f} | 0.001633 | 3.3e-05
6 | {Sacramento, CA} | {f,f} | 0.001433 | 7.8e-05
7 | {Miami, FL} | {f,f} | 0.0014 | 6e-05
8 | {Dallas, TX} | {f,f} | 0.001367 | 8.8e-05
9 | {Chicago, IL} | {f,f} | 0.001333 | 5.1e-05

Inline Many
CTE Queries

Many common table expressions (CTE) can now be inlined:

Note: This can cause unexpected results with complicated CTEs that
have workarounds to previous performance behaviors.

Prepared
Plan Control

In V12, PostgreSQL will optimize planned queries over a series of
6 executions. In short it takes the first 5 executions with a
custom plan. On the sixth execution it will check if a generic
plan would performed as well or better by comparing the planner
costs between the two. If the generic plan will perform as well
the prepared statement will use that plan going forward.

There is a new session variable which enables some forced
behavior, plan_cache_mode. The parameter can be set in the normal
fashion of using “SET”. It has the options of ‘force_custom_plan’
and ‘auto’. The default is ‘auto’ resembles the behavior in
versions less than 11.

Note: This is all about PREPARE/BIND/EXECUTE to protect against
SQL injection attacks and save on planning time.

JIT:
Just in Time

● Optional Just-in-Time (JIT) compilation for some SQL
code, speeding evaluation of expressions is now
‘ON’ by default.

● Useful for data warehouse queries

● Requires LLVM (not GCC)
– For more information:

● https://www.postgresql.org/docs/12/jit-reason.html

JIT Uses:

The JIT expression compiler currently works best in the following
situation:

• the query contains several complex expression such as
aggregates.

• the query reads a fair amount of data but isn’t starved on IO
resources.

• the query is complex enough to warrant spending JIT efforts on
it.

Example benefits explained here:

• https://www.citusdata.com/blog/2018/09/11/postgresql-11-just-
in-time/

Checksum
Control

 With version 9.3 (can you believe 2013!?), you could
initialize a PostgreSQL cluster with checksums for
better data integrity checking.

– Cluster wide, a one time irreversible operation
– Huge performance hit

 With version v12 in 2019, you will be able to turn
checksums on or off while the database is not in
service (off).

 Online enable / disable is planned for a future release

pg_\
checksums

 We now have a new tool to enable or disable
checksums:

– pg_checksums
● --enable / --disable
● --progress (display progress of operation)
● --check
● --filenode (Only validate the checksums in

the relation of a specific filenode)
● --no-sync (Faster but has potential for silent

failure)

 Do not run this on a running cluster

 Can take a long time

 Can be rerun if accidentally killed

 Formally pg_verify_checksums was used

Concurrent
REINDEX

● REINDEX CONCURRENTLY
– Slower than normal REINDEX:

● Multiple scans of the table
● Must wait for any queries that might use the index complete

– The following steps occur when using CONCURRENTLY, each in
an isolated transaction

● A new temporary index definition is added to the catalog pg_index.
This definition will be used to replace the old index.

● A first pass to build the index is done for each new index. Once the
index is built, its flag pg_index.indisready is switched to “true” to
make it ready for inserts, making it visible to other sessions once
the transaction that performed the build is finished.

● A 2nd pass, adding tuples that were added created during the first
pass.

● All the constraints that refer to the index are changed to refer to
the new index definition, and the names of the indexes are
changed.

● The old indexes have pg_index.indisready switched to “false” to
prevent any new tuple insertions.

● The old indexes are dropped.

The kahuna

● Pluggable storage
– In PostgreSQL world this is called “ACCESS METHODS”

● The ability to create new table and index access
methods such as Zheap

● Provide better control over bloat. zheap will prevent bloat by
allowing in-place updates in common cases and by reusing space
as soon as a transaction that has performed a delete or non-in-
place-update has committed. In short, with this new storage,
whenever possible, we’ll avoid creating bloat in the first place.

● Reduce write amplification both by avoiding rewrites of heap
pages and by making it possible to do an update that touches
indexed columns without updating every index.

● Reduce the tuple size by shrinking the tuple header and
eliminating most alignment padding.

– tl;dr; NO VACUUM

● ZedStore
– in-core columnar storage with similar benefits to Zheap

Migration Considerations

Migrating

● OID

● Data type removals

● Extensions no longer in existence

● Recovery.conf changes

● Geometric function and data type changes

● Changes to REAL / DOUBLE Precision

● pg_restore

● Btree

● Other compatibility issues

OID

● The special behavior of the OID column is not
defunct.
– Previously an OID column would only be automatically created

if you specified ‘with OIDS’ when creating a table. This has
been removed.

– Columns can still be explicitly created as type OID.

– If you rely on an OID column and use SELECT * will result in the
OID column being exposed, potentially breaking applications
as the OID column would be unexpected in the output.

Datatype
removal

● The following data types have been removed as of
v12:
– abstime,

– reltime

– tinterval

Deceased
Extensions

● The timetravel extension has been removed
– Was used to see history of a tuple

– has been removed

recovery\
.conf

● With the release of v12, the recovery.conf is now
within the postgresql.conf.
– Previous behavior of a separate recovery.conf file is no longer

supported
● if a previous recovery.conf file exists, PostgreSQL will not start

– files recovery.signal and standby.signal are used to switch into
non-primary mode.

● To start recovery mode create a file called recovery.signal
● If both standby.signal and recovery.signal exist, the standby mode

takes precedence

– The option “trigger_file” has been renamed to
promote_trigger_file

– The standby_mode option has been removed

– Do not allow conflicting recovery_target* settings
● Specifically only one recovery target can be set

– recovery_target_timeline now defaults to latest
● The previous value was current

Geometric
function
and data
type
changes

● Geometric function have been refactored to more
accurate but slightly different results from previous
releases

● The behavior of the line data type has been improved
– As has error reporting for this data type

Real and
Double
Precision

● Previous, float values would have output rounded to
6 or 15 decimals by default. The new behavior only
outputs the number of digits required to preseve the
exact binary value.
– To restore compatible behavior set extra_float_digits to 0

– New behavior is a performance improvement

pg_restore

● pg_restore now requires -f – in order to output to
STDOUT
– This may break some scripts

– Is actually, finally, technically correct

BTREE

● BTREE indexes now have a maxium index length that
is eight bytes less
– Could cause REINDEX to fail as values may be too large

Other
compatible
issues

● The data type ‘name’ can now use non-C collations

● DROP IF EXISTS FUNCTION/PROCEDURE/AGGREGATE/
ROUTINE will now error if no arguments are supplied
and there are multiple matching objects

● Removal of pg_constraint.consrc

● Removal of pg_attrdef.adsrc

● You are no longer able to disable dynamic shared
memory
– Specifically dynamic_shared_memory_type is now required and

can not be set to none

Other
Notables

● If you alter the timestamp or timestamptz data type
to be one of the other, there is no table rewrite
required if the session time is set to ‘UTC’

● Parallel queries are now allowed in ISOLATION LEVEL
‘SERIALIZABLE’

● CREATE INDEX and REINDEX now support progress
reporting.
– See pg_stat_progress_create_index

● CLUSTER AND VACUUM FULL now support progress
reporting
– See pg_stat_progress_cluster

● GSSAPI client and server encryption support

● Server variables can now use fractional input
– SET work_mem = ‘26.4MB’

Other
Notables

● The following replication parameters can be changed
with a SIGHUP (reload)
– archive_cleanup_command

– promote_trigger_file

– recovery_end_command

– recovery_min_apply_delay

● Allow replication slots to be copied
– pg_copy_physical_replication_slot()

– pg_copy_logical_replication_slot()

● Allow CHAIN of commit
– If AND CHAIN is specified on COMMIT, a new transaction is

immediately started with the same transaction characteristics

Thanks!

● To:
– Postgres Conference: For the foundation of Vision and Purpose

– PostgreSQL.org for the best documentation of any open source
project

– Montreal Postgres for attending

– To the fantastic People, Postgres, Data community!

– PostgresWarrior for taking all the “other” battles that allow me
to focus on Vision and Purpose!

	Slide 1
	Slide 2
	Slide 3
	What are we talking about?
	Slide 5
	What is Logical Replication?
	Slide 7
	Slide 8
	Slide 9
	Differences over Binary Replication
	Slide 11
	Slide 12
	Slide 13
	Why is Logical Replication good?
	Slide 15
	How does Logical Replication work?
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

