

2

Use Docker, Go, Rest and
some more to build a

PostgreSQL
multi cloud self service

PGCONF US, NEW YORK
MARCH 2020020

3

About me
Heiko Onnebrink - DBA – developer - open-source contributor

300 relatives in China + 3 kids in Germany

working 25 year as Oracle employee, trainer, consultant & freelancer

I decided 3 years ago to stop doing anything with Oracle products

Currently principal domain architect of core infrastructure @ METRO|NOM

heiko.onnebrink@metronom.com @HeikoOnnebrink

http://metronom.com

4

2000 Employees150.000 E
mployees

€37 Billion

25 Countr
ies

IT-Service
s

IT-Solutio
ns

Relational Database @ METRO|NOM

5

Facts

• IT grown over decades

• 3000+ Oracle databases

• ticket driven organisation

• slow delivery time

• low level of automatisation

Challenges

• Digital Readiness projects

• alternative RDBMS

• support DevOps / DBaaS

• full automation

• self service

• run across any cloud, on prem and public

6

7

We started on a green field ..

8

.. and looked around what‘s out there

9

.. and looked around what‘s out there

CHAPTER # 1

Containers

10

We started and build some containers ..

11

The PostgreSQL container

Based on Ubuntu Image

PostgreSQL database with GIS

WAL-G for wal shipping

FDW for PostgreSQL and Oracle

Oracle instant client

pg_activity

pg_audit

Logical Decoding plugins (Json/Protobuf) for Kafka Integration

Timescaledb & Prometheus Extension

... and an entrypoint / shell script which contains the logic

12

The PostgreSQL container (continued)

Features:

create a new database

- from scratch

- as a slave of some existing db

- as a clone of some existing db

run a major release upgrade of a database

run a full / PIT /restore-point based recovery

13

The Backup Container

Created from the PostgreSQL container, so it already contains WAL-G

binaries.

.. just contains a different entrypoint / shell script with some logic

Features:

write backups straight to object storage (S3, SWIFT, GCS)

allow full or incremental backups

added functionality to allow self-contained backups for database not

running wal shipping (by temporarily activating wal shipping during

backup execution)

also used to do backup cleanup on object storage

WAL-G

14

The Metric Container

There was already something .. so lets use it ..

Features:

out of the box metric sources for most relevant OS level metrics

out of the box PostgreSQL metrics

easy extensible to add any custome metrics

easy to containerize

open architecture.. can be used also for any other metric source

15

The backend and helper container

used wherever possible ready build containers from docker hub

Features:

Influxdb : time series database to store db and host metrics

Grafana : web based dashboard to visualize metrics

pgAdmin : web based admin tool

pgBadger: transforms db logs into HTTP web content

goStatic : minimalistic HTTP server used to publish pgBadger reports

16

we were able now to ..

spin up some db like this:

docker run registry.metronom.com/rdb-dev/postgresql:11

17

we were able now to ..

create db with usr/pwd, mount volume inside and ship wal to S3 storage :

docker run --rm –d --name postgresql –d

-v /dockerdata/postgresql:/postgresqldata

-e username=heiko –e password=supersecret –db=appdb1

-e DBUUID=5b54d046-c8f3-447c-8e56-247b7493b4df

-e BACKUP_TYPE=S3

-e BACKUP_URI=//backup.postgresqlbackup.dus30hcp01.asf.madm.net

-e BACKUP_CREDENTIALS=“someid:somesecret"

-e PG_WRITE_ARCHIVE=true

registry.metronom.com/rdb-dev/postgresql:11

18

and we were able to do all the other day2 operations :

• take a backup from a running db to some object store

• run a major PostgreSQL release upgrade

• restore/recover a db with all recovery options

• collect metrics and ship them to some metric repo

• publish metrics using Grafana container

• offer pgAdmin web

• publish pgBadger reports to web using HTTP container on DB node

19

But who will continously build and

test all these containers ..

CHAPTER # 2

The container build pipeline

20

BUILD TEST

We created next some container build pipeline ..

21

CONTAINER
TEST

Docker Trusted
Registry

C
H
AN
G
E

Build#4711

PG 10
PG 11

PG 12

TIME

Git Commit
/rdb-history

Postgresql:12.4711
Postgresql:11.4711
Postgresql:10.4711

PU
SH

 IM
A

G
E

DEPLOY

PU
SH

 IM
A

G
E

PULL #4711 IMAGES

/rdb-production

Postgresql:12
Postgresql:11
Postgresql:10

docker (re)tag image
with prod label

INTEGRATION
TEST DEPLOY

Postgresql:12.4711
Postgresql:11.4711
Postgresql:10.4711

BUILD

Container build pipeline (continued)

22

Container build pipeline (continued)

23

24

How do we make now a

Self Service out of it

CHAPTER # 3

The API first approach !

25

We build some REST API ..

26

RESTful

follows micro service principals

written in Go

consumes other REST APIs of cloud and storage providers

ultra high availability as it is runs across several DCs

backed by Cockroach DB (solving for us all the distributed problems)

secured by OAuth 2.0

terminated by a distributed load balancer

DC-1

DC-2

DC-3

Listener State Watcher

Worker Job Scheduler

PostgreSQL DBaaS Restful - API

Web UI

CHAPTER # 4

The self service

28

In the end we build the Self Service portal ..

29

written in Go (using Go HTML templates, jQuery, Twitter bootstrap)

designed with the target to have a great user experience

wizard for db creation incl. jobs and reports

allow self-service config/backup/restore/recovery

expose dashboards and pgBadger reports to DevOps teams

pay per use

integrate customer feedback so that we better learn how to improve our service

30

Intuitive to use..

31

wizard driven DB (and job) creation..

32

summary screen ..

What happens in the background when a DB gets created

33

Cloud
Ignition Config

build machine

PostgreSQL

Metric Collector

HTTP server

ship WAL

send metrics

request container start

pgBadger

WAL-G

34

DB details with request and job views ..

35

cost details per tenant ..

36

and we value customer feedback..

LAST CHAPTER

lessons learned

37

38

• automize everything you do more than once

• use automated testing from the very beginning

• know your customer, build what he needs and make him productive

• start with a minimal viable product (MVP)

• grow from here feature by feature

• it takes some time to get there.. but its worth the effort

once you got there you will gain time, quality and happy customer..

.. and have much more time to go to conferences and give a talk J

39

Thank you for
your attention!

the PostgreSQL team @

