
Pipelines
(of the data variety)



Data as a Service

• Ingesting data from a large variety of sources
• Standardizing, mapping columns, and centralizing for dashboards and 

analytics
• Know where the data is coming from, able to track back to raw inputs



Load Tracking

• Use uuids
• Unlike autoincrement ids obscures any underlying details or counts of other loads
• Allows relatively risk free merges of data loads potentially coming in from multiple 

sources

• Have a tracking table that timestamps the time a given dataset hit your 
internal servers
• Web response timestamp
• FTP file created time
• Etc

• Have supporting table structures for status, approvals, etc.
• Should be able to show how long each point in your pipeline takes



Cat/Cow/Dog/Fish

• Have a standard strategy for how you load, query, and archive data 
depending on the size and rate of growth
• Abstract the mechanics of moving data such that end users and 

analysis have a standard way of accessing data from a source
• Standardize archive strategies based on size and growth rate of data



Simple Naming Conventions



Dog Grooming

• Dog table users will be structure agnostic
• Define parent table structure and breed of dog, setting appropriate partitioning column.
• Enter table parameters id's per partition, date range per partition, or hashed partition count into 

a dog meta data table.
• Call dog maintenance code prior to and possibly after use.
• Dog grooming code is agnostic in regards to table usage. Data could originate from timescale 

statistical views, or from a TX low and slow insert, dog grooming code doesn't care.
• End user code is partition structure agnostic. Even if table is used in ten places, basic underlying 

partitions can be changed without updating code in ten different places.
• Grooming will anticipate needed partitions and provide, in the case of hashed partitions will flesh 

out hash structure automatically.
• Even if something goes severely wrong, worse case the __default table will get data dumped into 

it. Grooming will adjust partitions appropriately to deal with the data retroactively.
• Three columns are required, rest is up to the user



Streaming Data

Simplified to “FISH”

Use Timescale DB to abstract streaming 
work

End-Users access all data through an 
“ANIMAL” class



Archive Strategies

• If the data that a given analysis is derived from can easily be 
regenerated saving monthly or even quarterly snapshots can be 
adequate
• Depending on the frequency with which a given analysis is updated 

not every output needs to be saved
• Hold just the X most recent runs, and end of week or end of month snapshots
• Where X should be set to allow for quick recovery to a reliable state should an 

error be detected in a recent load
• Example, a daily load should keep the 11 most recent loads and then end of month 

snapshots. This allows the engineer running to go on vacation for a week and come back 
with the most recent good load still in the system, assuming that a bust occurred just 
after they left



Raw Data

• Pull in the data agnostic to future analysis
• Process data only AFTER you have the ability to corroborate your data 

matches source data and validation that import/subsequent checks 
are ok
• Have a load table that accurately represents the source data with 

minimal data cleaning



Load Checks

• Have automated checks on incoming loads
• Validate that the initial download in to the system is correct
• Check sums if possible (compare a couple of sums at source and destination)
• Did the ingestion process run for a reasonable amount of time
• Light weight but cause data processing to fail fast

• Manually validate the data at key steps
• Airplanes don’t always fly on autopilot
• Automate checks once they prove to be useful and you have honed in on key 

metrics
• Once you’ve ran a manual check twice it should be automated



Build Views

• Combine multiple data streams into coherent analysis
• For analysis that combines multiple data sources allow each 

underlying source to update at the cadence that is most efficient for 
that source
• Other analysis may need more frequent updates of a particular source

• Use load ids and many-to-many tables to keep track of which versions 
of the data went in to a given analysis
• Think of each step as a building block that could potentially feed in to

many other sources



Rolling Updates

• Set a standard for how you timestamp incoming data
• If scraping a website the timestamp reflects the response time of the remote 

server
• If from a shared file the timestamp is the data created in the shared folder
• The timestamp should represent the moment a given piece of data entered a 

given system’s perimeter

• When doing an analysis store the max timestamp used
• Combining these two methods it then becomes possible to know 

which data was available at the time a given analysis was run



State of the States

• Regularly run high-level checks of the whole system
• Silent failures or small leaks of the data are possible
• No automated system is going to catch all failures so manual reviews 

are vital
• Evaluate indexes and long running queries at this time



Alerts

• Have alerts on success of jobs as well as any type of failure
• Tier the alerts
• Yellow should alert on lower-level failures to establish patterns of issues, but 

no immediate response should be taken
• Orange should alert on bust that may require more immediate issues and 

further investigations, ie a count is outside of a normal range
• Red should happen for when a system or load failed and should require 

immediate attention.

• Keep red alerts to a minimum to prevent going numb to responses



Trend Alerts

• Have a server that runs more in depth checks on loads offline of your 
normal load systems
• Individually the queries that are ran should be small, but if checking 

for every variant of X, for example, then collectively these alerts are 
enough of a load on systems to require their own system
• These alerts can be both for more nuanced data quality checks and 

signals in the data



Ribbon Data

• For each load of data check against prior versions of the data
• Store the changes for targeted fields individually in a table for faster 

historical analysis
• Row counts
• Noting which rows of data changed where and when

• Consolidates historical datasets into a change log
• If done on at the level of change per key column allows a very detailed look at 

how the data is changing over time
• Ability to quantify what is typical for an update at a very detailed level



Append, Replace, Ribbon



Ribbon Advantages

• Each ribbon table tracks changes in a single field load over load
• Narrow means that the history of changes remains fast to query
• Clear WHAT has been changed and added load over load
• For metadata fields this provides an objective measure of growth
• For value fields the amount changed load over load generates a 

vector illustrating how the values are changing



Expense Reports Example

• Best example of this would be looking at expenses being filed for a 
team
• Pulling a snapshot shows the rate at which expenses are being 

submitted
• If a team (or individual) is lagging on submitting their reports seeing 

the changes across each snapshot gives an idea of where the totals 
may land


