Pipelines

(of the data variety)



Data as a Service

* Ingesting data from a large variety of sources

e Standardizing, mapping columns, and centralizing for dashboards and
analytics

* Know where the data is coming from, able to track back to raw inputs



Load Tracking

e Use uuids
e Unlike autoincrement ids obscures any underlying details or counts of other loads

* Allows relatively risk free merges of data loads potentially coming in from multiple
sources

* Have a tracking table that timestamps the time a given dataset hit your
internal servers
* Web response timestamp
* FTP file created time
* Etc

* Have supporting table structures for status, approvals, etc.
* Should be able to show how long each point in your pipeline takes



Cat/Cow/Dog/Fish

* Have a standard strategy for how you load, query, and archive data
depending on the size and rate of growth

* Abstract the mechanics of moving data such that end users and
analysis have a standard way of accessing data from a source

e Standardize archive strategies based on size and growth rate of data



Simple Naming Conventions
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Dog Grooming

* Dog table users will be structure agnostic
* Define parent table structure and breed of dog, setting appropriate partitioning column.

* Enter table parameters id's per partition, date range per partition, or hashed partition count into
a dog meta data table.

* Call dog maintenance code prior to and possibly after use.

* Dog grooming code is agnostic in regards to table usage. Data could originate from timescale
statistical views, or from a TX low and slow insert, dog grooming code doesn't care.

* End user code is partition structure agnostic. Even if table is used in ten places, basic underlying
partitions can be changed without updating code in ten different places.

* Grooming will anticipate needed partitions and provide, in the case of hashed partitions will flesh
out hash structure automatically.

* Even if something goes severely wrong, worse case the __ default table will get data dumped into
it. Grooming will adjust partitions appropriately to deal with the data retroactively.

* Three columns are required, rest is up to the user



Streaming Data

Simplified to “FISH”

Use Timescale DB to abstract streaming
work

End-Users access all data through an
“ANIMAL” class




Archive Strategies

* If the data that a given analysis is derived from can easily be
regenerated saving monthly or even quarterly snapshots can be

adequate
* Depending on the frequency with which a given analysis is updated

not every output needs to be saved
* Hold just the X most recent runs, and end of week or end of month snapshots
* Where X should be set to allow for quick recovery to a reliable state should an

error be detected in a recent load
* Example, a daily load should keep the 11 most recent loads and then end of month
snapshots. This allows the engineer running to go on vacation for a week and come back
with the most recent good load still in the system, assuming that a bust occurred just

after they left



Raw Data

* Pull in the data agnostic to future analysis

* Process data only AFTER you have the ability to corroborate your data
matches source data and validation that import/subsequent checks
are ok

* Have a load table that accurately represents the source data with
minimal data cleaning



Load Checks

* Have automated checks on incoming loads
* Validate that the initial download in to the system is correct
e Check sums if possible (compare a couple of sums at source and destination)
* Did the ingestion process run for a reasonable amount of time
* Light weight but cause data processing to fail fast

* Manually validate the data at key steps
* Airplanes don’t always fly on autopilot

* Automate checks once they prove to be useful and you have honed in on key
metrics

* Once you’ve ran a manual check twice it should be automated



Build Views

* Combine multiple data streams into coherent analysis

* For analysis that combines multiple data sources allow each
underlying source to update at the cadence that is most efficient for
that source

* Other analysis may need more frequent updates of a particular source

* Use load ids and many-to-many tables to keep track of which versions
of the data went in to a given analysis

* Think of each step as a building block that could potentially feed in to
many other sources



Rolling Updates

 Set a standard for how you timestamp incoming data

* If scraping a website the timestamp reflects the response time of the remote
server

* |f from a shared file the timestamp is the data created in the shared folder

* The timestamp should represent the moment a given piece of data entered a
given system’s perimeter

* When doing an analysis store the max timestamp used

* Combining these two methods it then becomes possible to know
which data was available at the time a given analysis was run



State of the States

e Regularly run high-level checks of the whole system
* Silent failures or small leaks of the data are possible

* No automated system is going to catch all failures so manual reviews
are vital

* Evaluate indexes and long running queries at this time



Alerts

* Have alerts on success of jobs as well as any type of failure

e Tier the alerts

* Yellow should alert on lower-level failures to establish patterns of issues, but
no immediate response should be taken

* Orange should alert on bust that may require more immediate issues and
further investigations, ie a count is outside of a normal range

* Red should happen for when a system or load failed and should require
immediate attention.

* Keep red alerts to a minimum to prevent going numb to responses



Trend Alerts

* Have a server that runs more in depth checks on loads offline of your
normal load systems

* Individually the queries that are ran should be small, but if checking
for every variant of X, for example, then collectively these alerts are
enough of a load on systems to require their own system

* These alerts can be both for more nuanced data quality checks and
signals in the data



Ribbon Data

* For each load of data check against prior versions of the data

 Store the changes for targeted fields individually in a table for faster
historical analysis
* Row counts
* Noting which rows of data changed where and when

* Consolidates historical datasets into a change log

* |f done on at the level of change per key column allows a very detailed look at
how the data is changing over time

* Ability to quantify what is typical for an update at a very detailed level



Append, Replace, Ribbon
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Ribbon Advantages

* Each ribbon table tracks changes in a single field load over load
 Narrow means that the history of changes remains fast to query
* Clear WHAT has been changed and added load over load

* For metadata fields this provides an objective measure of growth

* For value fields the amount changed load over load generates a
vector illustrating how the values are changing



Expense Reports Example

* Best example of this would be looking at expenses being filed for a
team

* Pulling a snapshot shows the rate at which expenses are being
submitted

* If a team (or individual) is lagging on submitting their reports seeing
the changes across each snapshot gives an idea of where the totals
may land



