
USING POSTGRESQLUSING POSTGRESQL
AND FRIENDS FOR AAND FRIENDS FOR A
STREET SWEEPINGSTREET SWEEPING
SOLVER PROJECTSOLVER PROJECT

James Marca, Activimetrics LLC

March 2020

STREET SWEEPINGSTREET SWEEPING
AND TRASH HAULINGAND TRASH HAULING

Pencil and paper routes
Low-tech solutions
Objectives:

minimize miles traveled
minimize vehicles

The problems are typically NP-Hard

BUSINESSBUSINESS
OPPORTUNITYOPPORTUNITY

Use Google Operations Research Tools (ORTools)
Solve for best routes
Initial maps using OpenStreetMap (OSM)

TECHNICALTECHNICAL
CHALLENGESCHALLENGES

Need to get OSM data into a routable network
Need to convert usual network into a LineGraph
Need to present results

POSTGRESQL ANDPOSTGRESQL AND
FRIENDS TO THEFRIENDS TO THE

RESCUERESCUE

POSTGISPOSTGIS
https://postgis.net/

a spatial database extender for
PostgreSQL. It adds support for

geographic objects allowing location
queries to be run in SQL

PGROUTINGPGROUTING
https://pgrouting.org/

extends the PostGIS / PostgreSQL
geospatial database to provide
geospatial routing functionality

LOAD OSM DATALOAD OSM DATA
Use osmium to extract a city
Read data into database with osm2pgrouting

https://osmcode.org/

https://github.com/pgRouting/osm2pgrouting/wiki/
Documentation-for-osm2pgrouting-v2.2

EXTRACT A CITYEXTRACT A CITY
osmium extract -p port-au-prince-poly.osm \
 -o port-au-prince-latest.osm \
 haiti-and-domrep-latest.osm.pbf

LOAD THE DATA INTOLOAD THE DATA INTO
PGROUTING TABLESPGROUTING TABLES

osm2pgrouting --f data/port-au-prince-latest.osm \
 --conf data/map_config_streets.xml \
 --dbname portauprince \
 --prefix 'portauprince_' \
 --username dbuser \
 --clean

CLEAN OSM DATACLEAN OSM DATA

TOO MANY SUB-SEGMENTSTOO MANY SUB-SEGMENTS
OSM is designed for many things
some street segments are extraneous
Example: intersections for service roads create too
many segments

OBJECTIVE: COMBINE SEGMENTSOBJECTIVE: COMBINE SEGMENTS
Goal is to link up segments
Need to introspect each node

Is it an isolated mid-point?
Can it be linked to another segment?
But want to keep the breaks at intersections

WITH RECURSIVEWITH RECURSIVE
WITH statements are great just to organize long SQL
But WITH RECURSIVE statements are
indispensable for problems like this
Allows recursively combining all nodes on a street

STRATEGYSTRATEGY
Each segment has source and target
Sum up all sources, all targets
Sources, targets seen once are likely interior nodes

 id | name | source | target | one_way |
cost_s | rev_cost_s

------+-----------------------+--------+--------+---------+--
------+------------

 433 | Western Avenue | 1 | 303 | 0 |
1.30 | 1.30

 4725 | Glenoaks Boulevard | 1 | 4061 | 1 |
2.58 | -2.58

 299 | Geneva Street | 2 | 216 | 0 |
26.01 | 26.01

 1735 | Glenoaks Boulevard | 2 | 1267 | 0 |
8.40 | 8.40

COUNTS OF SOURCE, TARGETCOUNTS OF SOURCE, TARGET
sources(source,count) as (
 select source,count(*) as count
 from glendale_ways group by source
),
targets(target,count) as (
 select target,count(*) as count
 from glendale_ways group by target
)

POTENTIAL INTERIOR NODESPOTENTIAL INTERIOR NODES
Any record with target count and source count of 1

possible_interiors as (
 select w.*,s.count as scount, t.count as tcount
 from glendale_ways w
 join targets t on (w.target=t.target)
 join sources s on (w.source=s.source)
 where t.count=1 and s.count=1
),

EXAMPLE RESULTEXAMPLE RESULT
 source | target | name | scount | tcount
--------+--------+----------------------+--------+--------
 3 | 1964 | Geneva Street | 1 | 1
 11 | 5607 | East Colorado Street | 1 | 1
 15 | 3918 | South Central Avenue | 1 | 1
 20 | 4529 | Harvey Drive | 1 | 1
 31 | 2068 | East Mountain Street | 1 | 1

“TRUE” INTERIORS“TRUE” INTERIORS
Possible interiors whose source and target nodes are

also possible interior segments

interiors as (
 select pi.*
 from possible_interiors pi
 join sources s on (pi.target=s.source)
 join targets t on (pi.source=t.target)
 where s.count=1 and t.count=1
)

EXAMPLE RESULTEXAMPLE RESULT
 id | source | target | name | scount |

tcount
------+--------+--------+-----------------------+--------+---

 2509 | 37 | 1986 | North Jackson Street | 1 |

1
 2503 | 57 | 1977 | South Pacific Avenue | 1 |

1
 398 | 118 | 277 | East Mountain Street | 1 |

1
 2424 | 127 | 1891 | Harvey Drive | 1 |

1
 5282 | 148 | 4621 | Flintridge Drive | 1 |

1

BUT MAPS ARE EASIER TOBUT MAPS ARE EASIER TO
VISUALIZEVISUALIZE

SEQUENCE STARTSSEQUENCE STARTS
Interior segments start and end at non-interior
segments
“Starts” are segments with

target is unique (count of 1)
source is not unique (node is source for lots of
segments)

“Ends” are segments with
source is unique (count of 1)
target is not unique

FIRST IDENTIFY POSSIBLEFIRST IDENTIFY POSSIBLE
STARTSSTARTS

A “start” to a chain of isolated segments
The “target” field has a count of one.

possible_starts as (
 select w.*, s.count as scount, t.count as tcount
 from glendale_ways w
 join targets t on (w.target=t.target)
 join sources s on (w.source=s.source)
 where t.count = 1 -- link is only one touching target
)

NARROW QUERY DOWNNARROW QUERY DOWN
Possible starts is too broad
For actual starts, source node has count > 1

starts as (
 select ps.*
 from possible_starts ps
 where ps.scount > 1
)

THIS IS TOO NARROWTHIS IS TOO NARROW
Some special cases need to be handled
All of these were worked out one by one
There are more
Other cities may have different quirks

A SOURCE IS A TARGETA SOURCE IS A TARGET
Some sources are also targets
Flow direction is not uniform

 union
 select ps.*
 from possible_starts ps
 join targets t on (ps.source=t.target)
 where ps.scount=1 and t.count>1
 -- more than one link target == ps.source

NAMES CHANGE, ONE PATHNAMES CHANGE, ONE PATH
Look at possible interiors to identify a name change

 union
 select ps.*
 from possible_starts ps
 join possible_interiors pi on (ps.source=pi.target)
 where ps.name != pi.name and ps.scount=1 and pi.tcount=1
 -- name change of road

SINGLETONSSINGLETONS
Like name change, but not in
possible_interiors set

 union
 select ps.*
 from possible_starts ps
 join possible_starts psi on (ps.source = psi.target
 and ps.name != psi.name)
 -- singletons

(DATA IS ALWAYS MESSIER THAN(DATA IS ALWAYS MESSIER THAN
ONE WOULD EXPECT)ONE WOULD EXPECT)

THE FULL STARTS QUERYTHE FULL STARTS QUERY
starts as (
 select ps.*
 from possible_starts ps
 where ps.scount >1
 union -- more than one link target == ps.source
 select ps.*
 from possible_starts ps
 join targets t on (ps.source=t.target)
 where ps.scount =1 and t.count>1
 union -- name change of road
 select ps.*
 from possible_starts ps
 join possible_interiors pi on (ps.source=pi.target)
 where ps.name != pi.name and ps.scount=1 and pi.tcount=1

union -- singletons

ENDS QUERY IS SIMILARENDS QUERY IS SIMILAR
Nothing new, as starts and ends are basically the same

NOW THE RECURSIVE BITNOW THE RECURSIVE BIT
recursive calls are broken into two steps
the first is an initializing step
the second is the recursive part
the recursive part is a union with the initializing step
the recursion needs to have a well-defined stop

INITIALIZATION STEPINITIALIZATION STEP
search_graph(gid, length_m, name, source, target, depth,
 path, segments, cycle, ...) as (

 select g.gid, g.length_m, g.name, g.source, g.target,
 1 as depth,
 array[g.gid] as path,
 st_asewkt(g.the_geom) as segments,
 false as cycle,
 ... -- other stuff
 from ends g
 -- initialize with ends, connect interiors to source

INITIALIZATION NOTESINITIALIZATION NOTES
gid is unique identifier for each segment
path is an array of gid’s
Start the recursion from the end
Push new gid’s to the beginning of the array

WHY ST_ASEWKT?WHY ST_ASEWKT?

Not free to convert geom to text representation
But union of geoms is pickier
By combining geoms as text, can preserve their type
of LineString

st_asewkt(g.the_geom) as segments

RECURSIVE PARTRECURSIVE PART
 union all
 select g.gid, g.length_m + sg.length_m,
 sg.name, g.source, sg.target,
 sg.depth+1 as depth,
 g.gid || sg.path as path,
 st_asewkt(st_makeline(g.the_geom, sg.segments)),
 g.gid = ANY(sg.path) as cycle,
 ... -- other stuff
 from interiors g -- recurse on interiors
 join search_graph sg on
 (g.target=sg.source -- interior target -> chain source
 and g.name=sg.name)-- but same street name too please
 where sg.depth < 100 and not sg.cycle -- stop guards

EXPLANATIONEXPLANATION
Start segment grown at ends
Grow segments from the interiors
Creates a list of increasingly long segments

POSTGIS NOTESPOSTGIS NOTES

st_makeline() used to avoid array type error
Makes a new line for each segment
Prepends new line bit to growing line
Whole result is dumped as well known text for next
recursive loop

st_asewkt(st_makeline(g.the_geom, sg.segments))

ALTERNATE VERSIONALTERNATE VERSION

Cast fixes recursive error re: mismatched array
types
EXPLAIN ANALYZE says they’re the same speed:
st_asewkt 117s vs ARRAY 119s

 ARRAY[g.the_geom] as segments
 …
 array_prepend(g.the_geom, sg.segments)
 ::geometry(LineString,4326)[],

EXAMPLE RESULTSEXAMPLE RESULTS
WITH RECURSIVE …
select gid,name,source,target,depth
from search_graph order by depth desc,name;
 gid | name | source | target | depth
------+-----------------------+--------+--------+-------
 6344 | North Louise Street | 5686 | 234 | 19
 6179 | North Louise Street | 5685 | 234 | 18
 5311 | Emerald Isle Drive | 4635 | 149 | 17
 6326 | North Louise Street | 5520 | 234 | 17
 5309 | Emerald Isle Drive | 4650 | 149 | 16
 5280 | Flintridge Drive | 4620 | 147 | 16
 6327 | North Louise Street | 5667 | 234 | 16
 5310 | Emerald Isle Drive | 4648 | 149 | 15

NEED TO PICK THE LONGESTNEED TO PICK THE LONGEST
The longest segment has depth of 19
Need to choose that one, not the shorter ones
Next part of WITH RECURSIVE statement picks off
longest segments

LONGEST GROUPSLONGEST GROUPS
gid_paths as (select unnest(sg.path) as node,depth
 from search_graph sg),
gid_max_depth as (
 select node,max(depth) as depth
 from gid_paths group by node),

distinct_paths as (
 select distinct path
 from search_graph sg
 join gid_max_depth gm
 on (gm.depth=sg.depth and
 gm.node in (select unnest(sg.path)))
)

MAKE ONE RECORDMAKE ONE RECORD
In one step:

Pick longest sequence using distinct_paths
Merge starts to add starting node
Convert text geom back to binary geom

MERGED SEGMENTSMERGED SEGMENTS
segments as (
 select c.name, g.source, c.target, c.depth+1 as depth,
 g.gid || c.path as path,
 ST_SimplifyPreserveTopology(
 ST_GeomFromEWKT(st_asewkt(st_makeline(g.the_geom,
 c.segments))),
 0.0000001) as the_geom, … other_columns …
 from search_graph c
 join distinct_paths dp on (c.path=dp.path)
 join starts g -- add start nodes to chain
 on (g.target=c.source --start.target == source
 and g.name=c.name) -- same name please
)

BOOK-KEEPING, AND FINISH UPBOOK-KEEPING, AND FINISH UP
The remaining SQL just tidies up
Make a new table

Start with the old table
Drop the components of merged segments
Add the new, longer merged segments

grouped as (
 select * from keep_ways
union
 select * from new_ways
)
insert into new_glendale_ways (…)
select … from grouped;

FINAL OUTPUT OF SEGMENT-FINAL OUTPUT OF SEGMENT-
JOINING WORKJOINING WORK

SOME NOTESSOME NOTES
Not all segments are fixed properly
Reduced number of segments by 40%

for Glendale, California
went from 7653 links to 4597 links

Huge impact on problem size
Absolutely worth the effort to figure this out

CONVERTINGCONVERTING
STREETS TO CURBSSTREETS TO CURBS

ONE-WAY AND TWO-WAYONE-WAY AND TWO-WAY
STREETSSTREETS

OSM data is pretty good about identifying one-way
streets
pgRouting can analyze OSM data and establish
forward and backward traversal costs
But using two-way streets is buggy

CONVERT ALL STREETS TOCONVERT ALL STREETS TO
CURBSCURBS

Curbs are all one-way
On two-way streets, curb movements are in
opposite directions
On one-way streets, curb movements are in same
direction
Easier to reason about moving from curb to curb

BIG SQL STATEMENT I’M GOINGBIG SQL STATEMENT I’M GOING
TO TALK ABOUTTO TALK ABOUT

drop sequence if exists curbgraph_v2_serial;
create sequence curbgraph_v2_serial;

drop table if exists curbs_v2_graph cascade;

with
tform as (
 select id, st_transform(the_geom,32611) as

geom,reverse_cost
 from new_glendale_ways
),
rhs as (
 select ST_Reverse(ST_Transform (
 ST_OffsetCurve(

geom

MAKING A LINEMAKING A LINE
GRAPHGRAPH

WHAT IS A LINE GRAPHWHAT IS A LINE GRAPH
The usual navigation map:

intersections as nodes
streets as links between nodes

Edge covering needs to reach every street
Convert original graph to line graph

streets are nodes
links represent legal movements between streets

THE CURBSTHE CURBS

USE PGROUTING TO MAKEUSE PGROUTING TO MAKE
LINEGRAPHLINEGRAPH

With curb graph in hand, this is a very easy task

drop table if exists curbs_v2_linegraph;
SELECT * into curbs_v2_linegraph FROM pgr_lineGraph(
 'SELECT curbid as id, source, target, cost_s as cost,

reverse_cost_s as reverse_cost FROM curbs_v2_graph'
);

ZOOMING IN ON AN AREAZOOMING IN ON AN AREA

ALL TO ALLALL TO ALL
DISTANCE MATRIXDISTANCE MATRIX

THE NEED FOR DISTANCESTHE NEED FOR DISTANCES
Solver must reach each node (street)
To do that efficiently, it must know distance
between streets
Goal of solver is to minimize overall travel distance
Therefore must have all to all travel matrix (or close
to it)

NOT HARD, JUST IRRITATINGNOT HARD, JUST IRRITATING
pgRouting has an excellent function
pgr_dijkstraCostMatrix()
creates a matrix of distances
but 9,193 nodes means table with 84,511,249 entries
I run out of RAM

UGLY HACKSUGLY HACKS
step through the curb table 3,000 at a time
grab random bunches of under-represented origins
rinse and repeat

FIRST, INSERT ALL IMMEDIATEFIRST, INSERT ALL IMMEDIATE
NEIGHBORSNEIGHBORS

truncate new_curbs_linegraph_matrix;
with onesteps as (
 select source as start_vid,
 target as end_vid,
 target_length_m as agg_cost
 from new_curbs_v2_linegraph a
)
insert into new_curbs_linegraph_matrix
 select * from onesteps
 on conflict do nothing;
-- INSERT 0 28067

NEXT, FUNCTION TO STEPNEXT, FUNCTION TO STEP
THROUGH DATA METHODICALLYTHROUGH DATA METHODICALLY

FLESHOUT_2000…FLESHOUT_2000…
create or replace function

fleshout_2000_curb_linegraph_matrix(starting int)
returns integer as
$BODY$
DECLARE
 i text;
 subsel text := 'SELECT id, source, target, target_length_m

as cost, reverse_cost FROM new_curbs_v2_linegraph';
 insert_sql text := '';
 check_sql text := '';
 get_one_sql text := '';
 test_sql text := '';
 startid int := 0;
BEGIN

insert sql := '

WHAT IT DOESWHAT IT DOES
Loops over data

Can pass in starting point as function parameter
Steps forward 1000 each iteration

FOR startid IN starting..7000 by 1000 LOOP
 RAISE NOTICE 'populate db starting with %', startid;
 EXECUTE insert_sql using startid;
END LOOP;

SQL QUERY BITSSQL QUERY BITS
Query will find 3,000 by 3,000 distance matrix
(because 3000 is what works on my laptop)

select distinct source
from new_curbs_v2_linegraph nl
where source > $1
order by source
limit 3000

ANOTHER SIMILAR FUNCTIONANOTHER SIMILAR FUNCTION
WITH RANDOMWITH RANDOM

with
 low_block (sid) as (
 select source
 from new_curbs_v2_linegraph nl
 where source <3300
 order by random()
 limit 1000
),
 mid_block (sid) as (
 select source
 from new_curbs_v2_linegraph nl
 where source >= 3300 and source <= 6600
 order by random()
 limit 1000

)

OR FOCUS ON THE UNDER-OR FOCUS ON THE UNDER-
REPRESENTED ONESREPRESENTED ONES

with
 sid_count (sid,cnt) as (
 select start_vid, count(*)
 from new_curbs_linegraph_matrix
 group by start_vid
 order by count
),
 lo_block (sid) as (
 select sid from sid_count
 limit 500
),
 hi_block (sid) as (
 select sid
 from sid_count

where cnt > 9000

OR GET SMART ABOUTOR GET SMART ABOUT
“UNDERREPRESENTED”“UNDERREPRESENTED”

with
 sid_count (sid,cnt) as (
 select start_vid, count(*)
 from new_curbs_linegraph_matrix
 group by start_vid
 order by count
),
 pctl (hicount) as (
 SELECT percentile_cont(0.07) WITHIN GROUP (ORDER BY cnt)

FROM sid_count
),
 lo_block (sid) as (
 select sid from sid_count
 limit 500

)

THE TABLE IS CLOSE ENOUGHTHE TABLE IS CLOSE ENOUGH
Each Origin should have 9123 destinations

with counts as (
 select start_vid,count(*) as cnt
 from new_curbs_linegraph_matrix group by start_vid)
select count(*),floor(cnt) from counts group by floor(cnt);
 count | floor
-------+-------
 201 | 9190
 2374 | 9191
 6607 | 9192
 11 | 9193
(4 rows)

SOLVE THE STREETSOLVE THE STREET
SWEEPING PROBLEMSWEEPING PROBLEM

OR TOOLS TO THE RESCUEOR TOOLS TO THE RESCUE
OR Tools is great
But it isn’t PostgreSQL related
So I’ll talk about it some other time

SOME BENCHMARKSSOME BENCHMARKS
My formulation takes about 20 minutes to generate
an initial solution
Can run for hours
Difficult to get the “shape” of a solution right
Difficult to visualize the output

SAVE THE GENERATED PATHSSAVE THE GENERATED PATHS
A�er solver finishes, generate a list of nodes “swept”
For deadhead nodes, use pgRouting to find
intermediate nodes

Deadhead meaning drive without sweeping over
several streets to get to a street that needs
sweeping

Gather the list of all nodes each vehicle visits (sweep
plus non-sweep)

PYTHON CODE TO SAVE LIST OFPYTHON CODE TO SAVE LIST OF
NODES TO DBNODES TO DB

def sequence_to_table(self,vsequence,table_name):
 sequence = 0
 insert_query_string = """insert into {}

(veh,sweep,linkid,geom)
 select %s,%s,%s,c.curb_geom as the_geom
 from curbs_v2_graph c
 where c.curbid =%s"""
 insert_query =

sql.SQL(insert_query_string).format(sql.Identifier(ta

 with self.conn.cursor() as cur:
 cur.execute(
 sql.SQL("drop table if exists

{}").format(sql.Identifier(table_name)))

ASIDEASIDE
Do not use Python string formatting to insert strings
and variables into your generated SQL
Doing so is strongly discouraged by psycopg
Instead use sql.SQL, and pass parameters to execute

sql.SQL("drop table {}").format(sql.Identifier(table_name)))
...
cur.execute(insert_query,(veh,sweep,linkid,linkid))

VISUALIZING THEVISUALIZING THE
OUTPUTOUTPUT

QGIS PLUS POSTGIS TABLESQGIS PLUS POSTGIS TABLES
The real reason I included geometry in output table
QGIS can directly display PostGIS geometry tables

NICE MAPS, BUT …NICE MAPS, BUT …
The maps are difficult to view
Routes are on top of each other
No sense of the movement of the vehicle
Try animating!
Helpful blog posts all over (look up geogiffery)
(https://medium.com/@tjukanov/geospatial-
animations-with-qgis-atlas-995d7ddb2d67)

USE QGIS ATLAS FUNCTIONALITYUSE QGIS ATLAS FUNCTIONALITY
Image stack style animation
Make a print view
Control the print view with an “atlas”
Dump thousands of images to a directory
Use ffmpeg

NAUSEA-INDUCING RESULTSNAUSEA-INDUCING RESULTS
Animation link:

https://activimetrics.com/images/jittery.webm

USE POSTGIS TO MAKE POVUSE POSTGIS TO MAKE POV
LAYERLAYER

Break up the segments into pieces (currently using
25 meters)
POV table computes spatial centroid over 2
preceding, 10 following segments
POV table is then used as atlas layer

TIP FROM THE POSTGIS DOCSTIP FROM THE POSTGIS DOCS
Use ST_LineSubstring to break line into N parts
Each part is from i to i+1, i = [0 .. N-1]
Use generate_series to generate the i values

POSTGIS DOC CODE:POSTGIS DOC CODE:
SELECT field1, field2,
 ST_LineSubstring(the_geom, 100.00*n/len,
 CASE
 WHEN 100.00*(n+1) < len THEN 100.00*(n+1)/len
 ELSE 1
 END) AS the_geom
FROM
 (SELECT sometable.field1, sometable.field2,
 ST_LineMerge(sometable.the_geom) AS the_geom,
 ST_Length(sometable.the_geom) As len
 FROM sometable) AS t
CROSS JOIN generate_series(0,10000) AS n
WHERE n*100.00/len < 1;

MY MODIFICATIONSMY MODIFICATIONS
Construct SQL with WITH statements
Compute required length of series based on longest
road / 25 meters

POSTGIS TRICKPOSTGIS TRICK

To get meters, transform geometry
geom starts in projection 4326, which is in degrees
Using st_length() on degrees is useless
By transforming to projection 32611, the
st_length() call gives meters

st_length(st_transform(geom,32611))

METERS TRICK → 326??METERS TRICK → 326??
Find your zone

Pick the correct SRID

https://en.wikipedia.org/wiki/
Universal_Transverse_Mercator_coordinate_system#

select srid,proj4text
 from spatial_ref_sys where srid between 32600 and 32661
 order by srid;
 srid | proj4text
-------+---
 32601 | +proj=utm +zone=1 +datum=WGS84 +units=m +no_defs
 32602 | +proj=utm +zone=2 +datum=WGS84 +units=m +no_defs
 32603 | +proj=utm +zone=3 +datum=WGS84 +units=m +no_defs
 32604 | +proj=utm +zone=4 +datum=WGS84 +units=m +no_defs
 32605 | +proj=utm +zone=5 +datum=WGS84 +units=m +no_defs
 …

FIND THE LONGEST SEGMENTFIND THE LONGEST SEGMENT
with
 lengthshare as (
 select id,linkid,veh,sweep,geom,
 st_length(st_transform(geom,32611)) as len
 from solver_output
 order by id
),
 maxlen as (
 select max(len) as len from lengthshare
),

DETERMINE “MAXITER”DETERMINE “MAXITER”

Divide the longest length by 25, and round

maxiter as (
 select (ceil(len/25.00)+1)::int as maxiter
 from maxlen
)

USING MAXITER, GENERATEUSING MAXITER, GENERATE
SERIESSERIES

More flexible than the example code fixing at 10000

series as (
 select maxiter, generate_series(1,maxiter) - 1 as n
 from maxiter
)

SNIP EACH LINE INTO PIECESSNIP EACH LINE INTO PIECES
snipped as (
 select id, id+(n/maxiter::numeric) as frame,
 linkid,veh,sweep,
 st_linesubstring(geom,
 25.00*n/len,
 case
 when 25.00*(n+1) < len then 25.00*(n+1)/len
 else 1
 end) as geom
 from lengthshare l
 cross join series s
 where s.n*25.00/len < 1
 order by frame)

FINALLY, SAVE TO NEW TABLEFINALLY, SAVE TO NEW TABLE
insert into
 solver_output_snipped (id,frame,linkid,veh,sweep,geom)
 select id,frame,linkid,veh,sweep,geom from snipped;

THERE WILL BE JITTERTHERE WILL BE JITTER

When the line doesn’t divide into 25 meters exactly,
the last segment will be shorter
Will result in some jitter at end of roads

st_linesubstring(geom,25.00*n/len,
 case when 25.00*(n+1) < len then 25.00*

(n+1)/len
 else 1 end) as geom

THE RESULTTHE RESULT
A table of points
Can be used as the point-of-view
Centers the atlas window where needed

BONUS: ARROW HEADS!BONUS: ARROW HEADS!
Previous animation just showed current street
With snipped roads, can show progress along street
(every 25m)
Looks more like a real animation

SMOOTHER ANIMATIONSMOOTHER ANIMATION
Animation link

https://activimetrics.com/images/smoother.webm

QUESTIONS?QUESTIONS?

THANK YOUTHANK YOU

