Common DB Schema
Change Mistakes

Nikolay Samokhvalov
nik@posteres.ai

=i Postgres.ai

Speaker: Nikolay Samokhvalov

o Database systems:

T —

PostgreSQL

o Worked on XML data type and functions (2005-2007)

o Long-term community activist — #RuPostgres, Postgres.tv

o 2002-2005:

o since 2005:

o Conferences Program Committee g\l highload™ 32%‘?9"“' PGIBZE etc.

o Current business: &2} Pogtgres_ai

Created/reviewed more than 1,000 DB migrations

=i Postgres.ai

http://rupostgres.org
http://postgres.tv

=/ Postgres.ai

— clone DB of any size in a few seconds in bring them in any
point of the DevOps lifecycle

- automated (in Cl) testing of DB migrations
- guess-free SQL optimization
- instant deployment of full-size staging apps

Ag? GitLab cHEwYCOM MIrO NUTANDC

Qawi sk =B (ONGRES

i Postgres.ai

Fresh version of these slides

— comments are open (and welcome!)

! Postgres.ai

This talk’'s goals

*2) see some examples of mistakes, horror stories

2 learn something new

i Postgres.ai

This talk’'s goals

(=0 see some examples of mistakes, horror stories

2 learn something new

how avoid downtime and issues — learn principles

see concrete path to having downtime-free process

=i Postgres.ai

Terminology

DML - database manipulation language
(SELECT / INSERT / UPDATE / DELETE, etc.)

DDL - data definition language
(CREATE .., ALTER .., DROP ..)

DB migrations — planned, incremental changes
of DB schema and/or data
DB schema migration & data migration

DB schema evolution, schema versioning
DB change management, and so on

i Postgres.ai

Applying a schema migration to
a production database is always
a risk

Wikipedia

https://en.wikipedia.org/wiki/Schema_migration

e

https://en.wikipedia.org/wiki/Schema_migration

1.
2
3.
4
o

vpes of mistakes

Schema mismatch

. Heavy operation (processing too much data)

Blocked (cannot acquire lock)

. Blocker (holding heavy lock)

. Post-deployment issues

=i Postgres.ai

DB change — risk classification

Too much work later / for others

Change fails or wasgl?iiglgs
is being blocked others

Too much work now / for us
(to apply the change)

i Postgres.ai

l[deal Change

Too much work later / for others

Change fails or ’ wasgl?iiglgs
is being blocked others

Too much work now / for us
(to apply the change)

=i Postgres.ai

Schema mismatch

Too much work later / for others

Change fails or — wasgl?iiglgs
is being blocked others

Too much work now / for us
(to apply the change)

=i Postgres.ai

Heavy operation

Too much work later / for others

Change fails or Change is
is being blocked blocking
is being blocke lockin

Too much work now / for us
(to apply the change)

=i Postgres.ai

Blocked (cannot acquire lock)

Too much work later / for others

Changefailsor ot wasgl?iiglgs
isbeingblocked others

Too much work now / for us
(to apply the change)

=i Postgres.ai

Blocker (holding heavy lock)

Too much work later / for others

Change fails or »_ wasggiiés
is being blocked

others

Too much work now / for us
(to apply the change)

=i Postgres.ai

Post-deployment issues

Too much work later / for others

Change fails or wasgl?iiglgs
is being blocked others

Too much work now / for us
(to apply the change)

=i Postgres.ai

DB changes — risk classification

Too much work later / for others

Change is
blocking
others

Change fails or
is being blocked

Deployment
failure

Immediate
performance
degradation

Too much work now / for us
(to apply the change)

=i Postgres.ai

Example #1

create table t1 (
id int primary key,
val text

)5

-- dev, test, QA, staging, whatever - OK

-- prod:
ERROR: relation "t1" already exists

=i Postgres.ai

Example #1

Heavy
work later

create table t1 (
id int primary key, blocked others
val text ey

work now

Failed or Blocking

)5

-- dev, test, QA, staging, whatever - OK

-- prod:
ERROR: relation "t1" already exists

=i Postgres.ai

IF [NOT] EXISTS

create table if not exists t1 (
id int primary key,
val text
)
NOTICE: relation "t1" already exists, skipping

CREATE TABLE

®)
®)

C

=i Postgres.ai

Start using DB schema migration tool

7 = &SQITCH

Flyway Liquibase

S am
L/ "‘
L/ L]
L]
e (W

RAILS

django % yiiframework

e
-

Test changes in Cl

- Both DO and UNDO steps are supported (can revert)
- ClI: test them all
- Better: DO, UNDO, and DO again

=i Postgres.ai

Test changes in Cl

- Both DO and UNDO steps are supported (can revert)
- ClI: test them all
- Better: DO, UNDO, and DO again

Now guess what...

“Thanks” to IF NOT EXISTS, we now may leave UNDO empty!

i Postgres.ai

X Don't:

- IF [NOT] EXIST

Do:

- test DO-UNDO-DO in Cl
- keep schema up to date in all envs
- don't ignore or work-around errors

=i Postgres.ai

The Landscape of the Database Testing (app dev)

Schema Data
Change
management
(performance)
‘macro” Load testing, benchmarks

=i Postgres.ai

Reliable database changes — the hierarchy of needs

Actual, realistic testing Extremely few

Review and approval process (manual) Some

Test DO and UNDQ in CI, on an empty or small synthetic DB Many

Version control for DB changes: Git & Flyway / Sqitch / Liquibase / smth else Al

i Postgres.ai

Actual, realistic testing Extremely few
Review and approval process (manual) Some
Test DO and UNDQ in CI, on an empty or small synthetic DB Many

Version control for DB changes: Git & Flyway / Sqitch / Liquibase / smth else Al

=i Postgres.ai

You 2021-05-16 11:29:58

exec create table t1 as
select id::int,
from generate_series(1, 10000000) id;

random()::text as val

alter table t1 add primary key (id);

fe) Joe Bot 2021-05-16 11:29:59

=
-

exec create table tl as select id::int, random()::text as val from generate_series(1l, 10000000) id; alter table t1

add primary key (id);

Session: webui-i4038

% time seconds wait_event

64.82 9.447511 Running

7.92 1.154220 LWLock.WALWriteLock
6.94 1.011216 I0.DataFileExtend
5.69 0.829122 I0.WALWrite

5.27 0.767460 I0.WALSync

2.55 0.370954 I0.DataFileWrite
2.06 0.300581 I0.BufFileWrite
2.04 0.297535 I0.DataFileRead
4551 0.220348 I0.DataFileImmediateSync
1.21 0.176163 I0.BufFileRead
100.00 14.575110

The query has been executed. Duration: 14.575 s (estimated for prod: 13.518...116.725 s)
Estimated timing for production (experimental). How it works

Example #2

.

(Commmﬁ

‘ =i Postgres.ai

Example #2 — limited duration (1bs)

You 2021-05-16 11:43:16
exec set statement_timeout to '15s'; update tl set val = replace(val, '0159', '0iSg');

/) Joe Bot 2021-05-16 11:43:16
|

-

exec set statement_timeout to '15s'; update tl set val = replace(val, '0159', '0iSg');

Session: webui-i4038

ERROR: ERROR: canceling statement due to statement timeout (SQLSTATE 57014)

X Failed

M

=i Postgres.ai

Example #2 — limited duration (1bs)

s,

sl
|
~e=m

You 2021-05-16 11:43:16
exec set statement_timeout to '15s'; update tl set val = replace(val,

Joe Bot 2021-05-16 11:43:16

exec set statement_timeout to '15s'; update tl set val = replace(val, '0159',

Session: webui-i4038

ERROR: ERROR: canceling statement due to statement timeout (SQLSTATE 57014)

X Failed

Failed or
blocked

Heavy
work later

Heavy
work now

Blocking
others

'9159', '0iSg');

'0iSg"');

H

-:
1]

¥
"

Postgres.ai

Example #2 — unlimited duration

You 2021-05-16 12:00:11
exec set statement_timeout to @; update tl set val = replace(val, '0159', '0iSg');

/=) Joe Bot 2021-05-16 12:00:12

-4
R

exec set statement_timeout to 0; update t1l set val = replace(val, '0159', '0iSg');

Session: webui-

i4038

% time seconds wait_event

70.34 31.070133 Running

14.99 6.621164 LWLock.WALWriteLock
4.46 1.972113 I0.WALInitWrite
3.65 1.611055 IO.DataFileExtend
3.54 1.564610 I0.WALInitSync

1.38 0.608596 I0.WALWrite

1.33 0.588894 I0.DataFileRead
0.20 0.089901 LWLock.WALBufMappinglLock
0.10 0.044417 10.WALSync

100.00 44.170883

The query has been executed. Duration: 44.171 s (estimated for prod: 42.615...43.106 s)
Estimated timing for production (experimental). How it works

® Completed

Postgres.ai

Example #2 — unlimited duration

You 2021-05-16 12:00:11
exec set statement_timeout to @; update tl set val = replace(val, '0159', '0iSg');

-

fe=) Joe Bot 2021-05-16 12:00:12
-

exec set statement_timeout to @; update tl1l set val = replace(val, '0159', '0iSg');

Session: webui-i4038

% time seconds wait_event

70.34 31.070133 Running

14.99 6.621164 LWLock.WALWritelLock

4.46 1.972113 IO0.WALInitWrite Failed or
3.65 1.611055 I0.DataFileExtend blocked
3.54 1.564610 I0.WALInitSync

1.38 0.608596 I0.WALWrite

1.33 0.588894 I0.DataFileRead

0.20 0.089901 LWLock.WALBufMappinglLock

0.10 0.044417 I0.WALSync

100.00 44.170883

The query has been executed. Duration: 44.171 s (estimated for prod: 42.615...43.106 s)
Estimated timing for production (experimental). How it works

® Completed

L [E\Y
work later

Heavy
work now

__ Blocking

others

Postgres.ai

Example #2 — diagnostics: rows, buffers

test=# explain (buffers, analyze) update t1l
set val = replace(val, '0159', '0iSg');

QUERY PLAN

Update on t1 (cost=0.00..189165.00 rows=10000000 width=42) (actual time=76024.507..76024.508 rows=0 loops=1)
Buffers: shared hit=60154265 read=91606 dirtied=183191 written=198198
-> Seq Scan on tl (cost=0.00..189165.00 rows=10000000Wwidth=42) (actual time=0.367..2227.103 rows=10000000

loops=1)
Buffers: shared read=64165 written=37703
Planning: . .
Buffers: shared hit=17 read=1 dirtied=1 hlt- ~459 GlB
Planning Time: ©.497 ms read: ~716 MiB
Execution Time: 76024.546 ms
(8 rows) dirtied: ~1.4GiB

written: ~1.5 GiB

Time: 76030.399 ms (01:16.030)

(with awful PG default settings) =i Postgres.ai

Example #2 — UPDATEs vs. Bloat

test=# create table al as select 1::int as i;

SELECT 1

test=# select ctid, * from al;

ctid | i

- +___
(0,1) | 1
(1 row)

test=# update al set i = i;

UPDATE 1
test=# select ctid, * from ail;

ctid | i
- +___
(0,2) | 1

(1 row)

=i Postgres.ai

Example #2 — what to do

Reduce the scope of work:
- Split to batches
- Temporary index to speed up lookups

- Avoid useless, silly updates

Avoid locking longer than 1s

Control dead tuples / bloat

i Postgres.ai

Example #3 — int4 PK problem

test=# insert into t1 select 2731, '';
ERROR: 1integer out of range

=i Postgres.ai

Example #3 — nalve method

test=# alter table tl1 alter column id type int8;

ALTER TABLE
Time: 273726.829 ms (04:33.727)

=i Postgres.ai

Example #3 — ways to solve int4 PK problem

Avoid:
1a) Stop writing to the table
1b) Use negative values — another space of 2*31-1 values

Transform without downtime;

2a) “New column” method
2b) “New table” method

=i Postgres.ai

Example #3 — The “New column” method

- Create a int8 column

- Install a trigger to copy value for all fresh rows
- Backfill the values for the existing rows

- Redefine PK ———— aPK needs two things:
- A unique index

- NOT NULL constraint
both these are not trivial

- Finally, all FKs referring to the old PK need to be redefined

=i Postgres.ai

Example #3 — The “New column” method
How to create a unique index without downtime:

create unique index concurrently on tbl(new_int8 column);

=i Postgres.ai

Example #3 — The “New column” method
How to create a unique index without downtime:
create unique index concurrently on tbl(new int8 column);

- might fail — it's normal

- if failed, leaves an INVALID index behind

- cleanup & retry logic is needed
(but not DROP IF EXISTS)

=i Postgres.ai

Example #3 — The “New column” method

How to create a unique index without downtime:

create unique index concurrently on tbl(new_int8 column);

- might fail — it's normal

- if failed, leaves an INVALID index behind

- cleanup & retry logic is needed
(but not DROP IF EXISTS)

Heavy
work later

Failed or Blocking

blocked others

Heavy
work now

=i Postgres.ai

Example #3 — The “New column” method

How to add NOT NULL without downtime?

X Before Postgres 11 — impossible without downtime
- NOT NULL constraint is not an “online” operation
- CHECK (.. IS NOT NULL) is not “enough” for a PK

Postgres 11+ trick:
- alter table ... add column .. not null default -1;

- Then “fix" all the -1 values
- Finally, drop the DEFAULT

i Postgres.ai

Example #3 — The “New table” method

- CDC: a trigger + “delta” table to keep track of changes
(or logical replication)

- REPEATABLE READ and snapshot export to get the initial data
- Take care of the constraints, indexes and all FKs

- Redefining a FK is also not trivial:

add NOT VALID (and VALIDATE after switching)

- It's even more tricky: FKs should be DISABLED till after switching
- Switch from the old table to the new one

- in a single transaction

- catching up the CDC “tail” inside the transaction

i Postgres.ai

Final example — chain of blockers

Session T:
begin; select * from tl where id = 1; -- and sit in "idle-in-tx"
Session 2:
alter table t1 add column one _more int8; Heawy
Failed or Blocking
blocked others
Session 3: |
Heavy
select * from t1 where id = 2; -- boom! Hork now

A blocked by ALTER

=i Postgres.ai

Final example — chain of blockers

change_age | pid | wait_event type | wait_event | blocked by pids | state | 1lvl | blocking others | latest_query_in_tx

———————————— e i e e h Tl e et i
00:06:41 | 28706 | Client | clientRead | {} | idletx | o | 1 | select * from tl where id = 1;

00:06:37 | 28709 | Lock | relation | {28706} | active | 1 | 1| . alter table tl add column one_more int8;
00:06:28 | 28725 | Lock | relation | {28709} | active | 2 | o | . select * from tl where id = 2;

(3 rows)

"Forest of lock trees” https://qgitlab.com/-/snippets/1890428

=i Postgres.ai

https://gitlab.com/-/snippets/1890428

|deal ALTER: lock_timeout & retries — use pl/pgsql

perform set config('lock_timeout', lock timeout, false); -- 5@ms or so

for 1 in 1..max_attempts loop
begin
execute 'alter table t1 add column nl int8';
ddl completed := true;

exit;
exception when lock_not_available then e
raise notice 'ALTER attempts: #% failed', 1i;
end;) :
end loop; blosked ———————F———— others

Heavy

How to run short ALTER TABLE work now
without long locking concurrent queries

https://www.depesz.com/2019/09/26/how-to-run-short-alter-table-without-long-locking-concurrent-queries/

(see the comment by Mikhail Velikikh)

=i Postgres.ai

https://www.depesz.com/2019/09/26/how-to-run-short-alter-table-without-long-locking-concurrent-queries/

How to become a "pro”

1. Test everything

e

How to become a "pro”

1. Test everything

2. Make testing convenient

w
=

Database Migration Testing with Database Lab

Hierarchy of Database Testing

- Realistic migration testing is hard

Automated Realistic Testing

Manual Migration Testing on Full DB

- No testing = unexpected problems

Automated Migration Testing on a “Toy” DB

Version control for DB changes: Git & Flyway / Sgitch / Liquibase / etc.

=i Postgres.ai

Database Migration Testing with Database Lab

- Realistic migration testing is hard Hierarchy of Datanase Testing

Automated Realistic Testing

Manual Migration Testing on Full DB

- No testing = unexpected problems

Automated Migration Testing on a “Toy” DB

Version control for DB changes: Git & Flyway / Sgitch / Liquibase / etc.

Database Lab makes realistic testing easy

|
aunaw
A\ \ \ J
Lo\ a\E T

Pipeline Needs Jobs 2 Tests 0

Clone_request Db_migrate

@ clone_request (7 @ db_migrate)

=i Postgres.ai

Thank youl

Slack (EN): slack.postgres.ai
Telegram (RU): t.me/databaselabru

Join the Database Lab Customer Advisory Group:
https://postgres.ai/customer-advisory-group

i Postgres.ai

http://slack.postgres.ai/
https://t.me/databaselabru
https://postgres.ai/customer-advisory-group

TOBE
FONTINVED...,

Some examples of failures due to lack of testing

- Incompatible changes — production has different DB schema than dev & test
- Cannot deploy — hitting statement_timeout — too heavy operations

- During deployment, we've got a failover
- Deployment lasted 10 minutes, the app was very slow (or even down)

- Two weeks after deployment, we realize that the high bloat growth
we have now has been introduced by that deployment
- Deployment succeeded, but then we have started to see errors

i Postgres.ai

We need better tools

=i Postgres.ai

SCIENTIFIC
AMERICAN

ONE DOLLAR

CMllareh 1973

BICYCLE TECHNOLOGY

T OF TRANSPORT (CAL(

S

JRIES PER GRAM PER KILOMETER)

o e — = 2
1 ° |
MICE °
* e
® LEMMING
BLOWFLY
B . o .
FRUIT FLY BEE RAT
‘ LOCUST
e B
- RABBIT
HUMMINGBIRD .
p HELICOPTER
BUDGERIGAR
JET FIGHTER
® ® DOG 4
GuLL & ® LIGHT PLANE
o cow
PIGEON SHEEP ® e

win of * T automosnes
-

=
. JET TRANSPORT
p! HORSES

®MAN ON BICYCLE

10-9 10~ 10-3 10-? 10 ! 10 107
BODY WEIGHT (KILOGRAMS)

)

104 103 10%

=i Postgres.ai

Steve Jobs (19380)

1) We, humans, are great tool-makers.
We amplify human abilities.

2) Something special happens
when you have 1T computer and T person.

It's very different that having 1 computer and 10 persons.

=i Postgres.ai

Traditional DB experiments — thick clones

oo mm mm mm Em mm omm omm oEm o N oo Tm mEm mm Em mm mm oEm oy N
l/ \ l/ \
I l I I
I I I l
I I [I
iik QE | l | I
/ /
Production A S e e e e e e e s’ A N e e e e e - s

"1 database copy — 10 persons’

=i Postgres.ai

Database Lab: use thin clones

—

& @
L , /| ®is .
Production . .

"1 database copy — 1 person’

=i Postgres.ai

“Thin clones™ — Copy-on-Write (CoW)

@ O
& ——— &
R, - P 5=

ERSERN

(:

7 -;l

/| \

\

i N
T h=-N

@ (cireddatablocks T D) 2
. I‘\4__ are alta DLOCKS i /) .

‘#: ’_;#’

A W

\\ ,l

. Extra blocks for changes
iz= B
| J
z f J
n-_} N ~Nd = - ‘L-_—

[[
. 2

$H Thick copy of production (any size)

@) Thin clone (size starts from 1 MB, depends on changes)

=i Postgres.ai

Database Lab — Open-core mode|

The Database Lab Engine (DLE) The Platform (SaaS)
Open-source (AGPLv3) Proprietary (freemium)
- Thin cloning — API & CLI - Web console — GUI

- Automated provisioning and data refresh - Access control, audit
- Data transformation, anonymization - History, visualization

- Supports managed Postgres (AWS RDS, etc.) - Support

https://qitlab.com/postares-ai/database-lab https://postares.ai/

A use these links to start using it for your databases

(]

A\ \ \ 4
A\ \ \ 4
A\ \ \ 4

i Postgres.ai

https://gitlab.com/postgres-ai/database-lab
https://postgres.ai/

Database Lab unlocks “Shift-left testing”

Development bottlenecks Frictionless development
(with standard staging DB) (with Database Lab)

=i
—

X Bugs: difficult to reproduce, easy to miss @ Bugs: easy to reproduce, and fix early

X Not 100% of changes are well-verified @ 100% of changes are well-verified

X SQL optimization is hard @ SQL optimization can be done by anyone
X Each non-prod big DB costs a lot © Non-prod DB refresh takes seconds

X Non-prod DB refresh takes hours, days, weeks @ Extra non-prod DBs doesn't cost a penny

=i Postgres.ai

https://en.wikipedia.org/wiki/Shift-left_testing

Database experiments on thin clones — yes and no

Yes No

- Check execution plan — Joe bot -, - Load testing

—

- EXPLAIN w/o0 execution - Regular HA/DR goals
- EXPLAIN (ANALYZE, BUFFERS) - backups

- (timing is different; structure and buffer (but useful to check

numbers — the same)
WAL stream, recover

- Check [;DL'd o bot) records by mistake)
- Inaexlaeas (Joe Do
- hot standby

- auto-check DB migrations (Cl Observer)
_ _ (but useful to offload very
- Heavy, long queries: analytics, dump/restore long-running SELECTS)
- No penalties!
(think hot_standby_feedback, locks, CPU)

=i Postgres.ai

DB migration testing — “stateful tests in CI”

What we want from testing of DB changes:

- Ensure the change is valid
- It will be executed in appropriate time

- |t won't put the system down
..and:

- What to expect? (New objects, size change, duration, etc.)

i Postgres.ai

Perfect Lab for database experiments

Realistic conditions — as similar to production as possible

The same schema, data, environment as on production

Very similar background workload

- Full automation
- “Memory” (store, share details)
- Low iteration overhead (time & money)

- Everyone can test independently

allowed to fail — allowed to learn

=i Postgres.ai

Database experiments with Database Lab today (2021)

Realistic conditions — as similar to production as possible
The same schema, data, environment as on production
TR orkdond
Fine automation

‘Memory” (store, share details)

Low iteration overhead (time & money)

Everyone can test independently

A\ \ \ 4

able to fail — able to learn

=i Postgres.ai

Why Database Lab was created

- Containers, OverlayFS (file-level CoW)
Cl: docker pull ... & docker run ...

— OK only for tiny (< a few GiB) databases

- Existing solutions: Oracle Snap Clones, Delphix, Actifio, etc.
SSSS, not open

— OK only for very large enterprises

i Postgres.ai

Companies that do need it today

- 10+ engineers
- Multiple backend teams (or plans to split soon)
- Microservices (or plans to move to them)

- 100+ GiB databases

- Frequent releases

i Postgres.ai

Database Lab — a high-level overview (with SaaS)

Production is not affected Unobtrusive

and can use any filesystem statistics collection
Abstract queries,
metadata

---------- > R LT S
Production Postgres-checkup Database Lab
databases agent Platform
l (SaaS)
Uses ZFS or LVM
e Clone management
-9 — Chome 0% REEEEEEECEEEEEEEED
Backups Database Lab

Engine instances
Tunnel

server

Queries, pLans
metadata

Joe
instance

Postgres.ai

& Data does not leave your infrastructure Your infrastructure

— Data flow
--» Metadata flow (clone management, query plans, etc.)

=i Postgres.ai

Inside the Database Lab Engine 2.x

The main '@
" y container

Sync , ("dblab_server")
container

— control, API
shared_buffers: 8Gi

Clone. éﬁ?’ éggf (Q?

Port: 6001 <
6001
shared_buffers: 1Gi ES()())(
shared_buffers: 1Gi
shared_buffers: 1Gi

Shared cache (OpenZFS: ARC): 50% of RAM

1 (or N) physical disk(s) + CoW support

\/
Test of a

DB migration

V
Testof a g
DB migration
\v/

Test of a
DB migration

=i Postgres.ai

DLE — the data flow (physical mode)

P [ndependent PGDATA ready,
Ready to accept any DDL, DML

Clone
destroyed

The “sync” instance
applies WALs
continuously

Independent PGDATA ready,
Ready to accept any DDL, DML

snapshot A
snapshot B
snapshot C

. - . The main PGDATA version
“Golden copy”

.) ——» _ the lag behind production
(initial thick clone) : : . is usually a few seconds

A new snapshot is created every N hours =i Postgres.ai

How snapshots are created (ZFS version)

- Create a “pre” ZFS snapshot (R/0)
- Create a “pre” ZFS clone (R/W)
- DLE launches a temporary “promote” container
- If needed, performs “preprocessing” steps (bash)
- Uses "pre’ clone to run Postgres and promote it to primary state
- |If needed, performs “preprocessing” SQL queries
- Performs a clean shutdown of Postgres

- Create a final ZFS snapshot that will be used for cloning

i Postgres.ai

Major topics of automated (Cl) testing on thin clones

- Security

https://postares.ai/docs/platform/security

- Capturing dangerous locks

Cl Observer: https://postares.ai/docs/database-lab/cli-reference#subcommand-start-observation

- Forecast production timing

Timing estimator: https:/postares.ai/docs/database-lab/timing-estimator

=i Postgres.ai

https://postgres.ai/docs/platform/security
https://postgres.ai/docs/database-lab/cli-reference#subcommand-start-observation
https://postgres.ai/docs/database-lab/timing-estimator

Making the process secure: where to place the DLE?

Pl he e

[Production]

I | e Dig wall

[Dev & Test]

=i Postgres.ai

Where to place the DLE? Current approach

0

GitHub
I | e Dig wall v
.~ Dev&Test | Gitkab
here z
unnefs
G\ Jenns

=i Postgres.ai

How it looks like: Cl part

Example: GitHub Actions:
https://qithub.com/agneum/runci/runs/2519607920?check_suite_focus=true

O Search or jump to... Pull requests Issues Marketplace Explore

& agneum / runci ¥ ©Watch~ 2 | Yrstar 0 % Fork 1

Code Issues Pull requests 1 ® Actions [T Projects Wiki () Security Insights

© bad migration .github/workflows/mainyml #97

(@ Summar: L
Y Cl migration
failed 2 days ago in 42s
Jobs
© CImigration > @ Setupjob

> @ Checkout
Run migrations

(@ Upload artifacts

(@ Get the response status

Post Checkout

Complete job

=i Postgres.ai

https://github.com/agneum/runci/runs/2519607920?check_suite_focus=true

More about dangerous lock detection

Postgres.ai Console B

Organization

Demo

0

of
Os

=]

Dashboard

Database Lab

Instances

Observed sessions

SQL Optimization

Ask Joe EED

History

Checkup

Reports

Settings
General
Members
Access tokens
Billing

Audit

Documentation

Ask support

Switch

Organizations / Demo / Observed sessions / Database Lab observed session #166

Database Lab observed session #166

Summary

Status:
Session: #166
Project: -

DLE instance:

Duration: 2m, 58
Created: 2 days ago
Branch: master
Commit: -
Triggered by: -

PR/MR: -
Checklist

Dangerous locks are not observed during the session
(125 intervals with locks of 1 allowed)

Session duration is within allowed interval
(spent 2m, 5s of the allowed 5m)

Observed intervals and details

Hide intervals ~

Started at Duration
v/ 2021-02-26 16:18:16 UTC 1s
v 2021-02-26 16:18:17 UTC 1s
& 2021-02-26 16:18:18 UTC 1s

{"datname":"test","relation":"pgbench_branches","transactionid":null,"mode":"AccessExclusivelLock","locktype":"relation","granted":true,"usename":"dblab_user_1"
"anarv"+"dran tahle nahanch hranchec:" "auarv ctart":"2021-02-2AT1A*1R+1R N21020+00+0AA" "ctata' i

Nikolay

‘-‘

=i Postgres.ai

v Overview 26 Commits 5 Pipelines 7 Changes 7 6 unresolved threads | [? [& A

o t. Dmytro Zaporozhets (DZ) @dzaporozhets - 1 week ago owner . @ [3 3
@abrandl| as per !54466 (comment 511910471) can you please review this merge request?
B
o ,,}“5’; gitlab-org/database-team/gitlab-com-database-testing @project_278964_bot2 - 1 week ago Maintainer @& [3 3
F W
I . .
| " Database migrations
1
Migrations included in this change have been executed on gitlab.com data for testing purposes. For details, please see the migration testing pipeline (limited access). Note that
=, this includes pending migrations from master .
g Migration Total runtime Result DB size change
o 20210215144909 12s +0.00 B
:-3
& 20210218105431 0.6s 3¢ +0.00 B
L Migration: 20210215144909
X e Duration: 1.2's
= e Database size change: +0.00 B
a8

Migration: 20210218105431

e Duration: 0.6 s
« Database size change: +0.00 B

Query Calls Total Time Max Time Mean Time Rows
ALTER TABLE "ci_builds" DROP COLUMN "artifacts_file" /xapplication:testx/ 1 12.9 ms 12.9 ms 12.9 ms o
eoe
Artifacts

o Database testing statistics
e Database Lab Instance

February 19, 2021 - https://gitlab.com/qitlab-org/qitlab/-/merge_requests/54564#note_51267/8910 =il Postgres.ai

https://gitlab.com/gitlab-org/gitlab/-/merge_requests/54564#note_512678910

Example: GitLab.com, testing database changes using Database Lab
- Full automation

- GitLab CI/CD pipelines securely work with Database Lab

Database Lab clones ~10 TiB database in ~10 seconds

Read their blueprint:

https://docs.qgitlab.com/ee/architecture/blueprints/database testing/

=i Postgres.ai

https://docs.gitlab.com/ee/architecture/blueprints/database_testing/

More about production timing estimation

Experimental, WIP: https://postares.ai/docs/database-lab/timing-estimator

estimator:
readRatio: 1
writeRatio: 1
profilingInterval: 20ms
sampleThreshold: 100

LOG: Profiling process 63 with 1@0ms sampling
% time seconds wait_event

17.715111 I0.DataFileRead

7.893916 Running

1.097738 I0.DataFileExtend
0.787341 LWLock.WALWriteLock
0.696663 I0.BufFileRead

0.662457 I0.BufFileWrite

0.654081 I0.WALInitWrite

0.499461 I0.WALInitSync

0.335660 I0.WALWrite

0.301637 I0.DataFileImmediateSync
0.250249 I0.WALSync

0.020805 LWLock.WALBufMappinglLock

100.00 30.915119

Summary:
Time: 3.148 s —
- planning: 0.168 ms l@'

- execution: 3.147 s (estimated* for prod: 2.465...2.693 s) S
—_— - 1/0 read: 627.267 ms

- I/0 write: 3.644 ms

Shared buffers:
- hits: 1016393 (~7.80 GiB) from the buffer pool
- reads: 16395 (~128.10 MiB) from the 0S file cache, including disk I/0
- dirtied: 16395 (~128.10 MiB)
- writes: 280 (~2.20 MiB)

=i Postgres.ai

https://postgres.ai/docs/database-lab/timing-estimator

Summary — available in PR/MR and visible to whole team

- When, who, status

- Duration (in the Lab + estimated for production)
- Size changes, new objects

- Dangerous locks

- Error stats

- Transaction stats

- Query analysis summary

- Tuple stats

- WAL generated, checkpoitner/bgwriter stats

- Temp files stats

Example (WIP): https:/qitlab.com/postgres-ai/database-lab/-/snippets/2083427

=i Postgres.ai

https://gitlab.com/postgres-ai/database-lab/-/snippets/2083427

More artifacts, details — restricted access

- System monitoring (resources utilization)
- pg_stat_*

- pg_stat_statements, pg_stat_kcache

- logerrors

- Postgres log

- pgBadger (html, json)

- wait event sampling

- perf tracing, flamegraphs; or eBPF

- Estimated production timing

https://qitlab.com/postgres-ai/database-lab/-/issues/226

i Postgres.ai

https://gitlab.com/postgres-ai/database-lab/-/issues/226

Database Lab Roadmap

Nttps://postares.ai/docs/roadmap

- Lower the entry bar
- Simplify installation
- Simplify the use

Easy to integrate

- kkk kKKK ok kkkkkkk

=i Postgres.ai

https://postgres.ai/docs/roadmap

VWhere to start

Postgres.ai/docs/

e

https://postgres.ai/docs/

