
Nikolay Samokhvalov
nik@postgres.ai

Common DB Schema
Change Mistakes

Speaker: Nikolay Samokhvalov
○ Database systems:

○ 2002-2005:

○ since 2005:

○ Worked on XML data type and functions (2005-2007)

○ Long-term community activist – #RuPostgres, Postgres.tv

○ Conferences Program Committee

○ Current business:

👉 Created/reviewed more than 1,000 DB migrations

etc.

http://rupostgres.org
http://postgres.tv

– clone DB of any size in a few seconds in bring them in any
 point of the DevOps lifecycle

- automated (in CI) testing of DB migrations
- guess-free SQL optimization
- instant deployment of full-size staging apps

CHEWY.COM

Fresh version of these slides

….
– comments are open (and welcome!)

This talk’s goals

😶 see some examples of mistakes, horror stories

😶 learn something new

This talk’s goals

😶 see some examples of mistakes, horror stories

😶 learn something new

✅ how avoid downtime and issues – learn principles

✅ see concrete path to having downtime-free process

Terminology
DML – database manipulation language

(SELECT / INSERT / UPDATE / DELETE, etc.)

DDL – data definition language

(CREATE …, ALTER …, DROP …)

DB migrations – planned, incremental changes
of DB schema and/or data
DB schema migration & data migration
DB schema evolution, schema versioning
DB change management, and so on

 Applying a schema migration to
 a production database is always
 a risk

Wikipedia
https://en.wikipedia.org/wiki/Schema_migration

https://en.wikipedia.org/wiki/Schema_migration

Types of mistakes
1. Schema mismatch

2. Heavy operation (processing too much data)

3. Blocked (cannot acquire lock)

4. Blocker (holding heavy lock)

5. Post-deployment issues

DB change – risk classification

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Change fails or
is being blocked

Change fails or
is being blocked

Ideal Change

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Change fails or
is being blocked

Schema mismatch

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Change fails or
is being blocked

Heavy operation

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Blocked (cannot acquire lock)

Change fails or
is being blocked

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Change fails or
is being blocked

Blocker (holding heavy lock)

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Change fails or
is being blocked

Post-deployment issues

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

DB changes – risk classification

Change is
blocking
others

Too much work now / for us
(to apply the change)

Too much work later / for others

Change fails or
is being blocked

Downtime

Slow / postponed
performance
degradation

Immediate
performance
degradation

Deployment
failure

Example #1
create table t1 (

 id int primary key,

 val text

);

-- dev, test, QA, staging, whatever – OK

-- prod:

ERROR: relation "t1" already exists

Example #1
create table t1 (

 id int primary key,

 val text

);

-- dev, test, QA, staging, whatever – OK

-- prod:

ERROR: relation "t1" already exists

Heavy
work later

Heavy
work now

Blocking
others

Failed or
blocked

IF [NOT] EXISTS
create table if not exists t1 (

 id int primary key,

 val text

);

NOTICE: relation "t1" already exists, skipping

CREATE TABLE

🤔

Start using DB schema migration tool

Test changes in CI
- Both DO and UNDO steps are supported (can revert)

- CI: test them all

- Better: DO, UNDO, and DO again

Test changes in CI
- Both DO and UNDO steps are supported (can revert)

- CI: test them all

- Better: DO, UNDO, and DO again

Now guess what…

 “Thanks” to IF NOT EXISTS, we now may leave UNDO empty!

❌ Don’t:

- IF [NOT] EXIST

✅ Do:

- test DO-UNDO-DO in CI
- keep schema up to date in all envs
- don’t ignore or work-around errors

The Landscape of the Database Testing (app dev)

Schema Data
Test schema

EXPLAIN (ANALYZE, BUFFERS)

Static analysis

Change
management

Dynamic analysis
(performance)

Test data

Test DDL Test DML

Load testing, benchmarks

“micro”

“macro”

Reliable database changes – the hierarchy of needs

Actual, realistic testing

Review and approval process (manual)

Test DO and UNDO in CI, on an empty or small synthetic DB

Version control for DB changes: Git & Flyway / Sqitch / Liquibase / smth else All

Many

Some

Extremely few

Actual, realistic testing

Review and approval process (manual)

Test DO and UNDO in CI, on an empty or small synthetic DB

Version control for DB changes: Git & Flyway / Sqitch / Liquibase / smth else All

Many

Some

Extremely few

🍒

Example #2

Example #2 – limited duration (15s)

Example #2 – limited duration (15s)

Heavy
work later

Heavy
work now

Blocking
others

Failed or
blocked

Example #2 – unlimited duration

Example #2 – unlimited duration

☠

Heavy
work later

Heavy
work now

Blocking
others

Failed or
blocked

Example #2 – diagnostics: rows, buffers

test=# explain (buffers, analyze) update t1
 set val = replace(val, '0159', 'OiSg');

 QUERY PLAN
--
 Update on t1 (cost=0.00..189165.00 rows=10000000 width=42) (actual time=76024.507..76024.508 rows=0 loops=1)
 Buffers: shared hit=60154265 read=91606 dirtied=183191 written=198198
 -> Seq Scan on t1 (cost=0.00..189165.00 rows=10000000 width=42) (actual time=0.367..2227.103 rows=10000000
loops=1)
 Buffers: shared read=64165 written=37703
 Planning:
 Buffers: shared hit=17 read=1 dirtied=1
 Planning Time: 0.497 ms
 Execution Time: 76024.546 ms
(8 rows)

Time: 76030.399 ms (01:16.030)

 hit: ~459 GiB
 read: ~716 MiB
 dirtied: ~1.4 GiB
 written: ~1.5 GiB

(with awful PG default settings)

Example #2 – UPDATEs vs. Bloat
test=# create table a1 as select 1::int as i;
SELECT 1

test=# select ctid, * from a1;
 ctid | i
-------+---
 (0,1) | 1
(1 row)

test=# update a1 set i = i;
UPDATE 1
test=# select ctid, * from a1;
 ctid | i
-------+---
 (0,2) | 1
(1 row)

Example #2 – what to do

Reduce the scope of work:
- Split to batches
- Temporary index to speed up lookups
- Avoid useless, silly updates

Avoid locking longer than 1s

Control dead tuples / bloat

Example #3 – int4 PK problem

test=# insert into t1 select 2^31, '';

ERROR: integer out of range

Example #3 – naïve method

test=# alter table t1 alter column id type int8;

ALTER TABLE

Time: 273726.829 ms (04:33.727)

☠☠☠
Heavy

work later

Heavy
work now

Blocking
others

Failed or
blocked

Example #3 – ways to solve int4 PK problem

Avoid:
1a) Stop writing to the table
1b) Use negative values – another space of 2^31-1 values

Transform without downtime:
2a) “New column” method
2b) “New table” method

Example #3 – The “New column” method

- Create a int8 column
- Install a trigger to copy value for all fresh rows
- Backfill the values for the existing rows
- Redefine PK ———— a PK needs two things:

- A unique index
- NOT NULL constraint

 ☝ both these are not trivial

- Finally, all FKs referring to the old PK need to be redefined

Example #3 – The “New column” method

How to create a unique index without downtime:

create unique index concurrently on tbl(new_int8_column);

Example #3 – The “New column” method

How to create a unique index without downtime:

create unique index concurrently on tbl(new_int8_column);

- might fail – it’s normal
- if failed, leaves an INVALID index behind
- cleanup & retry logic is needed

(but not DROP IF EXISTS)

Example #3 – The “New column” method

How to create a unique index without downtime:

create unique index concurrently on tbl(new_int8_column);

- might fail – it’s normal
- if failed, leaves an INVALID index behind
- cleanup & retry logic is needed

(but not DROP IF EXISTS)

Heavy
work later

Heavy
work now

Blocking
others

Failed or
blocked

Example #3 – The “New column” method

How to add NOT NULL without downtime?

❌ Before Postgres 11 – impossible without downtime
- NOT NULL constraint is not an “online” operation
- CHECK (.. IS NOT NULL) is not “enough” for a PK

✅ Postgres 11+ trick:
- alter table … add column .. not null default -1;
- Then “fix” all the -1 values
- Finally, drop the DEFAULT

Example #3 – The “New table” method
- CDC: a trigger + “delta” table to keep track of changes

(or logical replication)
- REPEATABLE READ and snapshot export to get the initial data
- Take care of the constraints, indexes and all FKs

- Redefining a FK is also not trivial:
add NOT VALID (and VALIDATE after switching)

- It’s even more tricky: FKs should be DISABLED till after switching
- Switch from the old table to the new one

- in a single transaction
- catching up the CDC “tail” inside the transaction

Final example – chain of blockers
Session 1:

begin; select * from t1 where id = 1; -- and sit in "idle-in-tx"

Session 2:
alter table t1 add column one_more int8;

Session 3:
select * from t1 where id = 2; -- boom!

 ^^ blocked by ALTER

Heavy
work later

Heavy
work now

Blocking
others

Failed or
blocked

Final example – chain of blockers

 change_age | pid | wait_event_type | wait_event | blocked_by_pids | state | lvl | blocking_others | latest_query_in_tx
------------+-------+-----------------+------------+-----------------+--------+-----+-----------------+--
 00:06:41 | 28706 | Client | ClientRead | {} | idletx | 0 | 1 | select * from t1 where id = 1;
 00:06:37 | 28709 | Lock | relation | {28706} | active | 1 | 1 | . alter table t1 add column one_more int8;
 00:06:28 | 28725 | Lock | relation | {28709} | active | 2 | 0 | .. select * from t1 where id = 2;
(3 rows)

“Forest of lock trees” https://gitlab.com/-/snippets/1890428

https://gitlab.com/-/snippets/1890428

Ideal ALTER: lock_timeout & retries – use pl/pgsql

perform set_config('lock_timeout', lock_timeout, false); -- 50ms or so

for i in 1..max_attempts loop
 begin
 execute 'alter table t1 add column n1 int8';
 ddl_completed := true;
 exit;
 exception when lock_not_available then
 raise notice 'ALTER attempts: #% failed', i;
 end;
end loop;

How to run short ALTER TABLE
without long locking concurrent queries
https://www.depesz.com/2019/09/26/how-to-run-short-alter-table-without-long-locking-concurrent-queries/

(see the comment by Mikhail Velikikh)

Heavy
work later

Heavy
work now

Blocking
others

Failed or
blocked👍

https://www.depesz.com/2019/09/26/how-to-run-short-alter-table-without-long-locking-concurrent-queries/

How to become a “pro”

1. Test everything

How to become a “pro”

1. Test everything

2. Make testing convenient

Database Migration Testing with Database Lab

- Realistic migration testing is hard

- No testing = unexpected problems

Database Migration Testing with Database Lab

- Realistic migration testing is hard

- No testing = unexpected problems

- Database Lab makes realistic testing easy

Thank you!
Slack (EN): slack.postgres.ai

Telegram (RU): t.me/databaselabru

Join the Database Lab Customer Advisory Group:
https://postgres.ai/customer-advisory-group

http://slack.postgres.ai/
https://t.me/databaselabru
https://postgres.ai/customer-advisory-group

Some examples of failures due to lack of testing
- Incompatible changes – production has different DB schema than dev & test
- Cannot deploy – hitting statement_timeout – too heavy operations

- During deployment, we’ve got a failover
- Deployment lasted 10 minutes, the app was very slow (or even down)

- Two weeks after deployment, we realize that the high bloat growth
we have now has been introduced by that deployment

- Deployment succeeded, but then we have started to see errors

We need better tools

Steve Jobs (1980)

1) We, humans, are great tool-makers.
We amplify human abilities.

2) Something special happens
when you have 1 computer and 1 person.

It’s very different that having 1 computer and 10 persons.

Traditional DB experiments – thick clones

+

Production

“1 database copy – 10 persons”

… …

Database Lab: use thin clones

Production

“1 database copy – 1 person”

“Thin clones” – Copy-on-Write (CoW)

The Database Lab Engine (DLE)
Open-source (AGPLv3)

The Platform (SaaS)
Proprietary (freemium)

Database Lab – Open-core model

- Thin cloning – API & CLI
- Automated provisioning and data refresh
- Data transformation, anonymization
- Supports managed Postgres (AWS RDS, etc.)

- Web console – GUI
- Access control, audit
- History, visualization
- Support

https://gitlab.com/postgres-ai/database-lab https://postgres.ai/

^^ use these links to start using it for your databases ^^

https://gitlab.com/postgres-ai/database-lab
https://postgres.ai/

Database Lab unlocks “Shift-left testing”

https://en.wikipedia.org/wiki/Shift-left_testing

 Yes
- Check execution plan – Joe bot

- EXPLAIN w/o execution
- EXPLAIN (ANALYZE, BUFFERS)

- (timing is different; structure and buffer
numbers – the same)

- Check DDL
- index ideas (Joe bot)
- auto-check DB migrations (CI Observer)

- Heavy, long queries: analytics, dump/restore
- No penalties!

(think hot_standby_feedback, locks, CPU)

 No
- Load testing
- Regular HA/DR goals

- backups
- (but useful to check

WAL stream, recover
records by mistake)

- hot standby
- (but useful to offload very

long-running SELECTs)

Database experiments on thin clones – yes and no

DB migration testing – “stateful tests in CI”

What we want from testing of DB changes:

- Ensure the change is valid

- It will be executed in appropriate time

- It won’t put the system down

…and:

- What to expect? (New objects, size change, duration, etc.)

Perfect Lab for database experiments

- Realistic conditions – as similar to production as possible
- The same schema, data, environment as on production

- Very similar background workload

- Full automation

- “Memory” (store, share details)

- Low iteration overhead (time & money)

- Everyone can test independently

allowed to fail → allowed to learn

Database experiments with Database Lab today (2021)

- Realistic conditions – as similar to production as possible
- The same schema, data, environment as on production

- Very similar background workload

- Fine automation

- “Memory” (store, share details)

- Low iteration overhead (time & money)

- Everyone can test independently

able to fail → able to learn

Why Database Lab was created

- Containers, OverlayFS (file-level CoW)

CI: docker pull … && docker run …

– OK only for tiny (< a few GiB) databases

- Existing solutions: Oracle Snap Clones, Delphix, Actifio, etc.
$$$$, not open

– OK only for very large enterprises

Companies that do need it today

- 10+ engineers

- Multiple backend teams (or plans to split soon)

- Microservices (or plans to move to them)

- 100+ GiB databases

- Frequent releases

Database Lab – a high-level overview (with SaaS)

Inside the Database Lab Engine 2.x

1 (or N) physical disk(s) + CoW support

Shared cache (OpenZFS: ARC): 50% of RAM

shared_buffers: 1Gi

Port: 600x
shared_buffers: 1Gi

Port: 6001
shared_buffers: 1Gi

Clone.
Port: 6001

shared_buffers: 8Gi

“sync”
container

The main
container
("dblab_server")

– control, API

Test of a
DB migration

∀

Test of a
DB migration

∀

Test of a
DB migration

∀

DLE – the data flow (physical mode)

“Golden copy”
(initial thick clone)

backups

Fetch W
ALs

The “sync” instance
applies WALs
continuously

The main PGDATA version
– the lag behind production

is usually a few seconds

A new snapshot is created every N hours

Cl
on

e
cr

ea
te

d
(b

as
ed

 o
n

sn
ap

sh
ot

 A
)

sn
ap

sh
ot

 A

sn
ap

sh
ot

 B

sn
ap

sh
ot

 C

Clone
destroyed

Clone created

(based on snapshot A
)

.. b
ased on

snapshot B

Independent PGDATA ready,
Ready to accept any DDL, DML

Independent PGDATA ready,
Ready to accept any DDL, DML

How snapshots are created (ZFS version)

- Create a “pre” ZFS snapshot (R/O)

- Create a “pre” ZFS clone (R/W)

- DLE launches a temporary “promote” container

- If needed, performs “preprocessing” steps (bash)

- Uses “pre” clone to run Postgres and promote it to primary state

- If needed, performs “preprocessing” SQL queries

- Performs a clean shutdown of Postgres

- Create a final ZFS snapshot that will be used for cloning

Major topics of automated (CI) testing on thin clones

- Security
https://postgres.ai/docs/platform/security

- Capturing dangerous locks

CI Observer: https://postgres.ai/docs/database-lab/cli-reference#subcommand-start-observation

- Forecast production timing

Timing estimator: https://postgres.ai/docs/database-lab/timing-estimator

https://postgres.ai/docs/platform/security
https://postgres.ai/docs/database-lab/cli-reference#subcommand-start-observation
https://postgres.ai/docs/database-lab/timing-estimator

Making the process secure: where to place the DLE?

Production

Dev & Test

The big wall

PII here

CI runners here

Where to place the DLE? Current approach

Production

Dev & Test

The big wall

PII here

CI runners here

High-level API calls

How it looks like: CI part
Example: GitHub Actions:
https://github.com/agneum/runci/runs/2519607920?check_suite_focus=true

https://github.com/agneum/runci/runs/2519607920?check_suite_focus=true

More about dangerous lock detection

February 19, 2021 – https://gitlab.com/gitlab-org/gitlab/-/merge_requests/54564#note_512678910

…

https://gitlab.com/gitlab-org/gitlab/-/merge_requests/54564#note_512678910

Example: GitLab.com, testing database changes using Database Lab

- Full automation

- GitLab CI/CD pipelines securely work with Database Lab

- Database Lab clones ~10 TiB database in ~10 seconds

Read their blueprint:

https://docs.gitlab.com/ee/architecture/blueprints/database_testing/

https://docs.gitlab.com/ee/architecture/blueprints/database_testing/

More about production timing estimation

Experimental, WIP: https://postgres.ai/docs/database-lab/timing-estimator

https://postgres.ai/docs/database-lab/timing-estimator

Summary – available in PR/MR and visible to whole team

- When, who, status
- Duration (in the Lab + estimated for production)
- Size changes, new objects
- Dangerous locks
- Error stats
- Transaction stats
- Query analysis summary
- Tuple stats
- WAL generated, checkpoitner/bgwriter stats
- Temp files stats

Example (WIP): https://gitlab.com/postgres-ai/database-lab/-/snippets/2083427

https://gitlab.com/postgres-ai/database-lab/-/snippets/2083427

More artifacts, details – restricted access

- System monitoring (resources utilization)
- pg_stat_*
- pg_stat_statements, pg_stat_kcache
- logerrors
- Postgres log
- pgBadger (html, json)
- wait event sampling
- perf tracing, flamegraphs; or eBPF
- Estimated production timing

https://gitlab.com/postgres-ai/database-lab/-/issues/226

https://gitlab.com/postgres-ai/database-lab/-/issues/226

Database Lab Roadmap
https://postgres.ai/docs/roadmap

- Lower the entry bar
- Simplify installation

- Simplify the use

- Easy to integrate

- *** **** * *******

https://postgres.ai/docs/roadmap

Where to start

Postgres.ai/docs/

https://postgres.ai/docs/

