
Aurora Global Database
Design Patterns for HA/DR

Shayon Sanyal
Sr Database Specialist SA
AWS

Agenda

Amazon Aurora: Quick recap

Aurora Global database: Overview

Use cases

Design patterns

Resources

Amazon Aurora: Quick recap

Aurora decouples storage and query processing

St
or

ag
e

no
de

s

Shared storage volume

SQL

Transactions

Caching

Database
node

Storage
Processing

Amazon Aurora

Scale-out, distributed storage processing
architecture

Purpose-built, log-structured distributed
storage system designed for databases

Storage volume is striped across
hundreds of storage nodes distributed
over three different Availability Zones

Six copies of data, two copies in each
Availability Zone to protect against
AZ+1 failures

Data is written in 10 GB protection
groups, growing automatically
when needed up to 128 TB

St
or

ag
e

no
de

s

Shared storage volume

SQL

Transactions

Caching

Availability Zone 1

SQL

Transactions

Caching

Availability Zone 2

SQL

Transactions

Caching

Availability Zone 3

In
st

an
ce

 n
od

es

Amazon Aurora Global database:
Overview

Use cases

• Disaster recovery –
promote remote
databases to a primary
for faster recovery in
the event of a disaster

• Data locality – bring
data closer to users in
different Regions to
enable faster reads

https://aws.amazon.com/solutions/case-studies/smartnews-2021/

https://aws.amazon.com/solutions/case-studies/smartnews-2021/

Fast cross-Region disaster recovery

us-east

eu-west

ReaderWriter

Global reads with low-replication latency

ap-southeast

Reader

Reader

us-west

Reader

us-east

eu-west

ReaderWriter

Amazon Aurora Global Database
Faster disaster recovery and enhanced data locality

US East

EU West

ReaderWriter

Application
Reader

US
West

Reader

Architecture:
• Physical, log-based asynchronous

replication
• Optimized replication service for

data transport
• Using AWS backbone network
• Multiple encrypted connections

reduce jitter
• Up to five secondary regions

Amazon Aurora Global Database

Aurora Storage

RO

Application

RW

Application

RO

Application

Availability zone 1 Availability zone 3Availability zone 2

Region A Region B

Aurora Storage

RO

Application Application

RO

Application

Availability zone 1 Availability zone 3Availability zone 2

RORW

High throughput: Up to 200K writes/sec – negligible performance impact

Low replica lag: Typically < 1 sec cross-country replica lag under heavy load

Fast recovery: < 1 min to accept full read-write workloads after region failure

Use case: Distributed Multi-
Region Apps want region local
access for read/write

Distributed Multi-Region Apps want region local access for
read/write

US East

EU West

ReaderWriter

AP Southeast

Reader

Reader

US West

Reader

Remote writes are forwarded from the local region to the
primary region and sent back

Writes

Write forwarding

Design pattern: Write Forwarding with Global Read Replicas
Readers in secondary DB clusters accept writes and
forward them to the primary DB cluster writer instance

Oregon

M R R

StorageR R

Storage

Ohio
R R

Storage

R R

Storage

Northern Virginia

Ireland

(Secondary Region)

(Secondary Region)

(Secondary Region)

(Primary Region)

In
bo

un
d

re
pl

ic
at

io
n

In
bo

un
d

re
pl

ic
at

io
n

In
bo

un
d

re
pl

ic
at

io
n

Outbound replication

Step 1: Writes are forwarded to the primary region

Write

1.

Step 0: App writes to read replica in secondary region

*Currently available for Aurora MySQL

Design pattern: Write Forwarding with Global Read Replicas
Readers in secondary DB clusters accept writes and
forward them to the primary DB cluster writer instance

Oregon

M R R

StorageR R

Storage

Ohio
R R

Storage

R R

Storage

Northern Virginia

Ireland

(Secondary Region)

(Secondary Region)

(Secondary Region)

(Primary Region)

In
bo

un
d

re
pl

ic
at

io
n

In
bo

un
d

re
pl

ic
at

io
n

In
bo

un
d

re
pl

ic
at

io
n

Outbound replication

Write ack.

2a.

2b.

Step 2: The primary region acknowledges and commits the transaction (2a)

and then replicates the update to all regions (2b)

Step 1: Writes are forwarded to the primary region

Step 0: App writes to read replica in secondary region

*Currently available for Aurora MySQL

Use case: Customers want to save
costs on DR

• Aurora Cluster in the secondary
region without any replicas
attached to storage

• Secondary’s storage volume is
kept in-sync with the primary DB
cluster

• Monitor replication lag using
CloudWatch console

• Add a replica before failing over
• Saves compute charge at the

cost of higher RTO

Design pattern: Aurora Global Database Headless Clusters

Use case: Customers want to cap
maximum RPO loss to a limit

Customers want to cap maximum RPO loss to a limit

• Managing recovery point objective (RPO)
• Global database replication is asynchronous
• Replicas typically lag primary by <1 second
• Data at risk in case of geo-disaster = replication lag
• What if a failure (e.g., network) causes replication to fall

further behind?
• Application needs protection from replica lag that is too high

Design pattern: Managed RPO

For applications with critical
RPO requirements

You define the maximum
RPO that you allow

If RPO lag in all secondary
Regions exceeds the limit,
Aurora pauses writes until at
least one Region catches up

Let’s see an example where we
set RPO = 20 seconds
à Lag is within the limit

à Lag is still OK in Irelandà Lag exceeds limit in both secondary Regions;
write traffic is paused in primary Region

à Lag in Ireland is back under the limit;
writing has been resumed

P R R

Ohio

Northern Virginia

Ireland

(secondary Region)

(secondary Region)

(primary Region)

Storage Replication
service

R R

Storage Replication
service

R R

Storage Replication
service

RPO lag:
0.4 seconds

RPO lag:
0.4 seconds

RPO lag:
22 seconds

RPO lag:
5 seconds

RPO lag:
30 seconds

RPO lag:
21 seconds

RPO lag:
15 seconds

Use case: Customers want to meet
DR test regulatory compliance
requirements

• An easy way to test your disaster recovery (DR) setup
• An easy way to relocate your primary Region
• Designed to be used on a healthy Aurora global database cluster
• Promote a secondary Region to be the primary

§ In a completely automated manner
§ Without destroying your global database topology
§ With RPO = 0, writes are stopped until new primary catches up
§ Without having to replicate previous data
§ Without interrupting your DR capability

• Point your application to the new primary and you’re done

Customers want to meet DR test regulatory compliance
requirements

Design pattern: Managed Planned Failover

R

P

(secondary Region)
primary

(primary Region)
secondary

In this example, we’ll promote
N. Virginia to primary

RPO=0; writes are stopped
until new primary catches up

RTO directly proportional to
AuroraGlobalDBReplicationLag
metric value for all the
secondaries

P R R

Ohio

Northern Virginia

Ireland

(secondary Region)

(secondary Region)

(primary Region)

R R

Storage Replication
service

R R

Storage Replication
service

à We click to promote N. Virginia
à Ohio writes are stopped
à Secondary Regions catch up
à N. Virginia becomes the primary
à Writes now available in N. Virginia
à Point your application at the new endpoint

and go

Storage Replication
service

Use case: Customers need to
recover rapidly on region failure

• Used to recover from an unplanned outage in an AWS region

• RPO depends on the AuroraGlobalDBReplicationLag metric value at the
time of failure

• RTO depends on how quickly you can perform the manual failover related
tasks

• Detach & Promote a secondary Region to be the primary
§ Stop writes to the Primary
§ Identify a secondary region to use as the new primary DB cluster based on least replication lag
§ Detach & promote the secondary region Aurora cluster

• Point your application to the new primary Aurora cluster
• Add secondary AWS regions as needed to re-create the global database

topology

Design pattern: manual unplanned failover

Use case: Customers want to
automate tasks on DR failover to
reduce RTO

https://aws.amazon.com/blogs/database/deploy-multi-
region-amazon-aurora-applications-with-a-failover-blueprint/

https://aws.amazon.com/blogs/database/automate-amazon-
aurora-global-database-endpoint-management/

Design pattern: Endpoint update automation

https://aws.amazon.com/blogs/database/deploy-multi-region-amazon-aurora-applications-with-a-failover-blueprint/
https://aws.amazon.com/blogs/database/automate-amazon-aurora-global-database-endpoint-management/

Use case: Customers want to
automate provisioning and
failover

Design pattern: Terraform automation for Global Database

https://aws.amazon.com › quickstart

https://aws.amazon.com/quickstart/

Resources
• AWS Terraform Workshop

• Amazon Aurora Terraform Module

• Aurora PostgreSQL Global Database Immersion Day

• Aurora MySQL Global Database Immersion Day

• Automated endpoint management for Aurora Global Database Managed Planned failover

• Automate endpoint management for Aurora Global Database unplanned failover

• Automate replication of secrets in AWS Secrets Manager across AWS Regions

https://aws-quickstart.github.io/workshop-terraform-modules/10_getting_started.html
https://registry.terraform.io/modules/aws-ia/rds-aurora/aws/latest
https://aurora-pg-lab.workshop.aws/lab9-aurora-global-db.html
https://awsauroralabsmy.com/global/deploy/
https://github.com/aws-samples/amazon-aurora-global-database-endpoint-automation
https://aws.amazon.com/blogs/database/deploy-multi-region-amazon-aurora-applications-with-a-failover-blueprint/
https://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/

Thank you!

