
10 Things I Learned
Solving Advent of Code

Puzzles with PostgreSQL
• Ryan Booz

• Postgres Conference Silicon Valley 2023

Ryan Booz
PostgreSQL & DevOps
Advocate

@ryanbooz

About me

/in/ryanbooz

www.softwareandbooz.com

youtube.com/@ryanbooz

github.com/ryanbooz/presentations

ロㄡニ ズ ,🎵,🐝,☕ = 💯

👫+[👧,👧,👦,👧,👦,👧] = 🧡

Agenda
ETL vs ELT
Loading Data
7 SQL/PostgreSQL Features
Community

01
02

03-10
Bonus

A few functions are
only included with
PostgreSQL >=14

01/10
ETL vs ELT

ETL vs ELT

• External processing of

non-relational data to

create relational data

• Not SQL focused

• Internal processing of

non-relational data to

create relational data

• SQL focused

Extract, Transform, Load Extract, Load, Transform

Convert non-relational data
into relational, tabular data.

Why Has ETL Been So Popular?

• External tools could more quickly bring specialized

functionality to data processing

• Databases didn't speak web languages well
• ie. XML or JSON

• Specialized tools = specialized jobs

Iteration is slow

Keep processing close to
the data for faster iteration

ELT in PostgreSQL

• Retain transactional consistency and control

• PostgreSQL has a plethora of functions for processing and
transforming data
• Regex

• JSON

• String

• Array and JSON output are particularly useful for processing

02/10
Inserting Data

Inserting Data

• Quickly dump data to tables and keep the schema simple

• Post-process JSON, XML, strings, arrays, etc.

• Use COPY:
• most supported method of getting data in quickly

• CSV or custom delimiters

• Use code:
• work in batches of rows to reduce transaction overhead

COPY vs \copy

• COPY is a PostgreSQL command, not SQL standard

• COPY requires files local to the server

• My examples primarily use psql \copy command

• This streams data from local files to PostgreSQL

STDIN COPY

COPY Caution

• Requires correct column order, matching data

types, and clean data (no conversion)

• Options like pgloader overcome some limitations
• pre-checks on certain columns of data

https://bit.ly/postgres-bulk-load-fosdem23

Create a generated ID for ordering

later if needed

Add a timestamp column if it's

time-series data

Pre-processes what makes sense,

but don't go overboard

Data Import Rules

K.I.S.S. – Advent of Code
create table dec05 (

id integer generated by default as identity,
puzzle_input text

);

-- COPY the text into the appropriate columns
\COPY dec05 (puzzle_input) FROM input_05.txt NULL '';

K.I.S.S. – Wordle
{

"data": {
"author_id": "395950789",
"created_at": "2022-01-15T03:09:22.000Z",
"id": "1482188130191122123",
"text": "Wordle 209

3/6\n\n\u2b1b\u2b1b\u2b1b\ud83d\udfe9\u2b1b\n\u2b1b\u2b1b\ud83d\udfe8\u2b1b\ud83d\udfe8\n\ud83d\udfe9\ud83d\udfe9\ud83d\udfe9\ud8
3d\udfe9\ud83d\udfe9"

},
"includes": {

"users": [
{

"id": "395950789",
"location": "Cali",
"name": "Hall & Oates Enjoyer",
"username": "wordlemaster",
"verified": false

}
]

},
"matching_rules": [

{
"id": "1482188147178053123",
"tag": "wordle"

}
]

}

K.I.S.S. – Wordle
CREATE TABLE tweets_raw(

ts timestamptz NOT NULL,
tweet_id bigint NOT NULL,
tweet_raw JSONB NOT null,

);

K.I.S.S. – Wordle
CREATE TABLE wordle_tweet (

ts timestamptz NOT NULL,
created_at timestamptz NOT NULL,
author_id bigint NOT NULL,
author_handle TEXT NOT NULL,
author_verified bool,
author_location TEXT,
tweet_id bigint NOT NULL,
tweet TEXT NOT null,
game int NULL,
guess_total int null

);

03/10
Common Table Expression

Common Table Expression (CTE)

• Also called WITH queries

• Reference the output of the query by a unique name

• Prior to Postgres 12 the CTE was materialized first

• Now in-lined unless you add MATERIALIZED

Common Table Expression (CTE)

• Multiple CTEs can be chained together, referring to

each other as you go

• Particularly helpful when you'll reuse a query more

than once (readability)

• Name output columns with parenthesis

CTE_1

CTE_3SELECT…

,
CTE_2 CTE_1 ,
CTE_3 CTE_2 ,

WITH

CTEs
WITH inventory AS (
 SELECT
 nullif(calories, '')::bigint AS calories,
 count(*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,
 id
 FROM
 dec01
)

CTEs
WITH inventory AS (
SELECT
nullif(calories, '')::bigint AS calories,
count(*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,
id

FROM
dec01

)

CTEs
WITH inventory AS (
SELECT
nullif(calories, '')::bigint AS calories,
count(*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,
id

FROM
dec01

)
SELECT sum(calories) as c
FROM inventory
GROUP BY elf
ORDER BY 1 desc;

CTEs
WITH inventory (calories, elf) AS (
SELECT
nullif(calories, '')::bigint,
count(*) FILTER (WHERE calories is null) OVER (ORDER BY id),
id

FROM
dec01

)
SELECT sum(calories) as c
FROM inventory
GROUP BY elf
ORDER BY 1 desc;

04/10
Recursive CTEs

Recursive CTEs

• The SQL language is declarative and batch-based

by implementation

• Recursive CTEs provide iterative processing using

SQL that wouldn't otherwise be possible

• Recursive CTEs allow SQL to be a Turing complete

language

CTE_1

CTE_2

CTE_3

CTE_1, CTE2

CTE_2

CTE_3SELECT…

,

,

,

WITH RECURSIVE

sizeparent_foldername

Folder_A

Folder_AFolder_A_1

Folder_AFolder_B

Folder_AFolder_A_2

Folder_BFolder_B_1

1234Folder_AFile_A1.txt

9876Folder_AFile_A2.txt

4567Folder_BFile_B1.txt

Recursive CTEs
WITH recursive files AS (

-- start with a non-recursive, initial query
SELECT name, parent_folder, SIZE FROM files_on_disk
WHERE parent_folder IS NULL

)
SELECT * FROM files;

name |parent_folder|size|
-----------+-------------+----+
Folder_A | | |

Recursive CTEs
WITH recursive files AS (

-- start with a non-recursive, initial query
SELECT name, parent_folder, SIZE
FROM files_on_disk
WHERE parent_folder IS NULL

UNION ALL
SELECT fid.name, fid.parent_folder, fid.SIZE
FROM files_on_disk fid

INNER JOIN files f ON fid.parent_folder = f.name
)
SELECT * FROM files;

Recursive CTEs
name |parent_folder|size|
-----------+-------------+----+
Folder_A | | | <-- Initial query
Folder_A_1 |Folder_A | | <--|
Folder_B |Folder_A | | |
Folder_A_2 |Folder_A | | |- Result of first join
File_A1.txt|Folder_A |1234| |
File_A2.txt|Folder_A |6789| <--|

WITH recursive files AS (
...

UNION ALL
SELECT fid.name, fid.parent_folder, fid.SIZE
FROM files_on_disk fid
INNER JOIN files f ON fid.parent_folder = f.name

)
SELECT * FROM files;

Recursive CTEs – Caution!

• Recursion continues until working table is empty

• Make sure there is an ending point (or add one!)

05/10
FILTER Clause

FILTER Clause

• Available for many aggregate and window functions

• An internal predicate for the aggregate as rows pass

through

• Useful in place of pivot-type queries

• Also helpful to spot sequences of data (rows preceding)

06/10
Text to…

Convert text to…

• Arrays, JSON, Tables

• Arrays and JSON are helpful as intermediate
stores, particularly in recursive queries

• Both are fully supported datatypes in PostgreSQL,
including indexing

• Many functions can output either datatype

Arrays, Tables, & JSON

• Some functions for converting text
• string_to_array

• regexp_matches

• regexp_split_to_table

• string_to_table

• json_each & json_object_agg

https://bit.ly/ryan-booz-2023-talks

07/10
CROSS JOIN LATERAL

CROSS JOIN LATERAL

• For every row on the left, execute query on the right

• Output is the product of both sets

• Allows chained queries to "reach back" to previous

result sets for data

• Very useful with Set Returning Functions (SRF)

SELECT T.a, CJ.b, CJ2.c FROM ,
CJ,

CJ2

SELECT string_to_table(T.a, null)

SELECT string_to_array(CJ.a, null)

CROSS JOIN LATERAL

• Also useful for simplifying SQL at a higher level by

hiding calculations lower

• Reorganize data by returning VALUES

CROSS JOIN LATERAL
...

select hm.step,
hm.x, hm.y,
h.x, h.y,
t.x, t.y

from tmove tm
join hmove hm on tm.step+1 = hm.step

cross join lateral
(VALUES (tm.hx+hm.x, tm.hy+hm.y)) as h(x,y)

cross join lateral
(VALUES (

case when abs(h.y-tm.ty) = 2 then h.x
when abs(tm.tx-h.x) <= 1 then tm.tx
else tm.tx + hm.x end,

case when abs(h.x-tm.tx) = 2 then h.y
when abs(tm.ty-h.y) <= 1 then tm.ty
else tm.ty + hm.y end

)) t(x,y)
...

CROSS JOIN LATERAL
...
select hm.step,

hm.x, hm.y,
h.x, h.y,
t.x, t.y

from tmove tm
join hmove hm on tm.step+1 = hm.step

cross join lateral
(VALUES (tm.hx+hm.x, tm.hy+hm.y)) as h(x,y)

cross join lateral
(VALUES (

case when abs(h.y-tm.ty) = 2 then h.x
when abs(tm.tx-h.x) <= 1 then tm.tx
else tm.tx + hm.x end,

case when abs(h.x-tm.tx) = 2 then h.y
when abs(tm.ty-h.y) <= 1 then tm.ty
else tm.ty + hm.y end

)) t(x,y)
...

08/10
WITH ORDINALITY

WITH ORDINALITY

• Any Set Returning Function can also return the

ordinal value of each row

• Faster than ROW_NUMBER()

• Retains order without an ORDER BY

09/10
WINDOW Functions

WINDOW Functions

• Aggregates on steroids that work in context of the
current query row

• Look backwards and forwards

• Powerful data analysis tool that can be challenging
to master…

• …but worth the investment!

10/10
Range Type

Range Type

• Ranges of dates and numbers

• Multi-range values supported in PostgreSQL 14+

• Can be inclusive or exclusive of each bound

• Many built-in range operators for easy comparison

• Indexable!

Bonus
Community

PostgreSQL Community

• Twitter

• Slack

• Discord

• LinkedIn

• Postgres Weekly Newsletter

• PostgreSQL.life Interviews

• #PGSQLPhriday monthly blog event

PostgreSQL Community

• Vik Fearing

• Feike Steenbergen

• David Kohn

• Sven Klemm

• John Pruitt

• Tobias Petry

• Bruce Momjain

• Andreas Scherbaum

• Ryan Lambert

• More, more, more…

🎉 THANK YOU! 🎉

github.com/ryanbooz/presentations

