
ARCHIVING DATA
How to Identify Requirements and Implement 

Solutions

By: CJ Estel, Experity Health



AGENDA

Introduction

Reasons to Archive

Developing Scope and Requirements

Common Strategies

Our Implementation

Things to Look out For

Code Examples



INTRODUCTION
Who am I? 

CJ Estel

What experience do I have? 

I have worked with Postgres and MySQL databases for over 20 years. I specialize in 
High Availability and building Infrastructure as Code (IaC). I have written 
numerous published puppet modules, deployment tools, and scripts designed to 
make database administration scalable in large scale environments.

3



REASONS TO ARCHIVE
4

• Contractual obligations

• Government regulations

• Makes database tables smaller and maintenance operations 
easier to work with

• Makes databases smaller and easier to fail over, backup, etc.

• Can reduce exposure in a data breach

• Can reduce expenses associated with subpoenas for data

• Can speed up queries due to smaller indexes and working 
with less data



DEVELOPING SCOPE 

AND REQUIREMENTS



QUESTION EVERYTHING
6

• What is the database archival retention 
period

• How frequently should archive run

• What is the overall archive retention policy

• What tables does the archival pertain to

• Is the archival based on top level data or 
referencing tables

• What fields are we archiving based on

• Do any of those archive fields allow for 
nulls

• What are our maintenance windows

• How quickly would you need an archive 
restored

• How do you deploy DDL Changes

• Does summary data need preserved

• Do you have any implied foreign keys in 
code that are not in the database

• Can I access a full copy of production for 
testing and timing purposes

• Can an application stack connect to this 
copy of production for app testing (think 
PHI/sensitive data restrictions

• Are there any tables that you expect to have 
bad data (future dated, implied foreign key 
cleanup)

• Are there any upstream or downstream 
services that may be impacted

• If data flows to analytics, should analytics 
also delete

• Will your app break if I add or modify 
tables directly in the database



ARCHIVE DATA ACCESS
7

• Hot Data Access

• Consider keeping as detached partition or in an archive schema 
for period of time

• Warm Data Access

• Data is no longer in production database but lives easily 
accessible and loaded on another server (analytics, reporting, etc)

• Cold Data Access

• Generally held in long term storage, needs restored to use

• No Data Access

• Data is deleted and not held anywhere



COMMON STRATEGIES

8

• Partition tables and detach/drop the partitions as they age 
out

• Prune Data

• Define Archive Data

• Hot Data Access

• Warm Data Access

• Cold Data Access

• No Data Access (Delete)



OUR IMPLEMENTATION
9

• Implement not null constraints on any fields in the database you will be archiving 
on

• Based on foreign key dependencies, define the order in which you will archive the 
tables data

• Implement any indexes on fields that will be necessary to facilitate queries for 
archiving

• Identify if table will be archived using partition or pruning method

• If pruning, identify select queries that will appropriately select the data to be 
archived starting with the child most tables

• Delete/move these records from production table

• ideally using a function or wrapper that can delete rows in batches, example to 
come

• If holding as hot data set, have processes that will cycle the hot data to files that can 
be moved to long term storage



THINGS TO LOOK OUT FOR
10

• Truly defining what falls into archive period. For Instance

• are customers a one time thing and we can delete all customers past a certain 
created_on date?

• If a customer has a survey within our archive period, do we preserve the 
customer in that instance?

• If a survey has some sort of internal tracking that could happen after the 
survey comes back where it is worked by staff for improvements, we would 
have newer data in survey feedback associated with an older survey. Do we 
delete all feedback for surveys older than X, or do we preserve surveys that 
have feedback that have been worked within our archive period?

customer
survey

survey_feedback



THINGS TO LOOK OUT FOR (CONT)
11

• On Delete cascade can make things WAY simpler to delete children 
objects, but it can also make it WAY harder in the event you ever need to 
restore data.

• Bad data, implied foreign keys, and implied constraints should be 
corrected and formalized in the database. 

• If considering partitions

• Understand run times to convert to table (and workarounds/risks of 
online methods)

• Understand restrictions on uniqueness and need for check constraints 
on unique fields

• Understand foreign keys to the table and their potential impacts on 
detaching partitions



THINGS TO LOOK OUT FOR (CONT)
12

• Will replicas, analytics, etc be impacted by the methods 
you use to adjust ddl

• If using something like pg_partman, will application 
ORM crash if changes to objects are detected

• Will your archive introduce differences between 
environments and if so, how are those tracked/deployed 
consistently

• Will the archive cause backups in replication

• You will likely want to rebuild indexes after archival



CODE EXAMPLES

13



THANK YOU

CJ Estel

github.com/cjestel


