
Good bye Sequence, hello Snowflake!

Jan Wieck
Principal Software Engineer

Basics of Sequences in PostgreSQL
● Sequences are used to generate unique identifiers.
● Sequences in PostgreSQL do not roll back.
● You cannot use a Sequence in PostgreSQL to create gap

free identifiers.
● Sequences are also not allocated in chronological order

according to any timestamp taken in the transaction.
● Never accept a design that requires the order to be strict.
● Use bigserial instead of serial

Sequences and Replication
● Do sequences need to be replicated?

○ Not really,
○ but what about failover?
○ We had a solution for this in previous systems.

● Are there other ways to avoid sequence replication?

Add problems of multi-master
● Network latency probably will prevent a central sequence

generator.
● Every node needs its own number range.
● Allocating blocks of sequences is possible but requires

bookkeeping.
CREATE SEQUENCE … START 1000 MAXVALUE 1999

● Need to monitor this.

Alternative number range
● Sequence with different START and INCREMENT>1

Node1: CREATE … START 1 INCREMENT 100;
Node2: CREATE … START 2 INCREMENT 100;

● Node ID visible in the last two digits.
● Maintenance free.
● Still can use CACHE.
● Has no relation to any order of allocation.

Snowflake Extension
https://github.com/pgEdge/snowflake

● Based on int8 and a sequence.
● Designed as a drop-in replacement (WIP).
● Internally a 41 bit timestamp with ms resolution, a 10 bit

node-ID and a 12 bit counter.

https://github.com/pgEdge/snowflake

Snowflake Extension
● snowflake.nextval(seqid regclass)
● snowflake.currval(seqid regclass)
● seqid is optional (using a default sequence).
● snowflake.format(int8)

{"id": 1, "ts": "2024-04-05 19:46:51.022+00", "count": 0}
● snowflake.convert_sequence_to_snowflake(seqid)
● Does this create a somewhat usable order?

Snowflake Example
db1=# CREATE TABLE t1 (
db1(# id bigserial PRIMARY KEY,
db1(# data integer
db1(#);
CREATE TABLE
db1=# SELECT
snowflake.convert_sequence_to_snowflake('t1_id_seq');
NOTICE: EXECUTE ALTER TABLE public.t1 ALTER COLUMN id SET
DEFAULT snowflake.nextval('public.t1_id_seq'::regclass)
NOTICE: ALTER SEQUENCE public.t1_id_seq NO CYCLE MAXVALUE 2
 convert_sequence_to_snowflake

 2
(1 row)

Snowflake Example
db1=# INSERT INTO t1 (data) SELECT generate_series(1, 10);
INSERT 0 10
db1=# select snowflake.format(id), data from t1 limit 4;
 format | data
---+------
 {"id": 1, "ts": "2023-01-01 00:00:00+00", "count": 1} | 1
 {"id": 1, "ts": "2023-01-01 00:00:00+00", "count": 2} | 2
 {"id": 1, "ts": "2023-01-01 00:00:00+00", "count": 3} | 3
 {"id": 1, "ts": "2023-01-01 00:00:00+00", "count": 4} | 4
(4 rows)

What’s next?
● Automatically change a serial or bigserial column

into a snowflake on CREATE TABLE or ALTER ADD
COLUMN.

● Any suggestions?

● Any questions?

