
Scaling PostgreSQL: Navigating Horizontal and
Vertical Scalability Pathways

Principal Engineer
Ibrar Ahmed

Introduction to Scalability in PostgreSQL

• Horizontal vs. Vertical Scalability: Enhance PostgreSQL's capability by scaling up (enhancing server capacity) or scaling

out (adding more servers).

• Replication and Partitioning: Use replication for high availability and partitioning to manage large datasets efficiently.

• Connection Pooling: Implement connection pooling with tools like PgBouncer to manage numerous concurrent connections

efficiently.

• Indexing Strategies: Optimize query performance in large datasets with appropriate indexing (B-tree, GIN, BRIN, etc.).

• Configuration and Tuning: Adjust PostgreSQL configuration parameters (e.g., work_mem, shared_buffers) for optimal

performance and scalability.

Vertical Scalability

01

● Optimize Configuration
● Adjust critical server settings like shared_buffers and work_mem to enhance performance, reducing disk I/O and improving query response

times.
● Tailoring these parameters to match specific workloads optimizes hardware resource utilization, crucial for vertical scalability.

● Indexing
● Employ strategic indexing (e.g., B-tree for general queries, GIN for searches) to facilitate faster data retrieval and lower query execution times.
● Proper index management minimizes system load, directly contributing to more efficient database operations.

● Query Optimization
● Analyze and refine SQL queries using EXPLAIN, focusing on efficient joins, optimized subqueries, and minimal data fetching for better

performance.
● This process reduces the database's resource consumption and execution time, enhancing its ability to handle more requests.

● Connection Management
● Implement connection pooling solutions like PgBouncer to manage and reuse database connections, reducing overhead and improving

scalability.
● Efficient connection management allows PostgreSQL to handle a higher number of concurrent connections without significant resource strain.

● Maintenance
● Regularly perform database maintenance tasks such as vacuuming, analyzing, and reindexing to prevent data bloat and maintain query

efficiency.
● These activities ensure the database remains in optimal health, supporting sustained performance and scalability over time.

Vertical Scalability in PostgreSQL

Why Architecture before Installation?
• Many users start installation without knowing the architecture.
•

Architecture gives you a better understanding to choose the desired database and configuring
it accordingly

Processes 1

Memory 2

Storage 3

PostgreSQL Architecture

Postmaster

Postgres

Postgres

Postgres

S
h
a
r
e
d_b

u
f
f
e
r
s

W
A
L B

u
f
f
e
r
s

13007/12831 13007/12833 13007/12832

000000010000000000000085 00000001000000000000090 00000001000000000000009B

12832 12832

Log Files

Data Files ($PGDATA)

WAL Files (pg_wal)

Data Files (table space)

C
o
m
m
i
t

L
O
G

Auto VACUUM

WAL Writer

Bg WritersCheckpointer

Archiver process

Stats collector
Logging
Collector

PostgreSQL Architecture

Postgres 1

checkpointer 2

background writer 3

stats collector 4

autovacuum launcher 5

logical replication 6

PostgreSQL Processes

54175 :
autovacuum
launcher

54174 : WAL
Writter

54173 :
background

writer

54172 :
Checkpointer

54177 : logical
replication
launcher

54176 : Stats
collector

54185 : Postgres

54251 :
Postgres

54459 : Postgres

54170 : Postmaster Other Background Processes

postgres 54170 0.0 0.6 292140 18:16 0:00 /usr/local/pgsql.14/bin/postgres

postgres 54184 0.0 0.0 13284 18:16 0:00 psql postgres
postgres 54251 0.0 0.0 13356 18:17 0:00 psql postgres
postgres 54459 0.0 0.0 13284 18:18 0:00 psql postgres

postgres 54185 0.0 0.1 293688 18:16 0:00 postgres: vagrant postgres [local] idle
postgres 54252 0.0 0.1 293096 18:17 0:00 postgres: vagrant postgres [local] idle
postgres 54460 0.0 0.1 293096 10208 0:00 postgres: vagrant postgres [local] idle

postgres 54172 0.0 0.0 292140 18:16 0:00 postgres: checkpointer
postgres 54173 0.0 0.0 292272 18:16 0:00 postgres: background writer
postgres 54174 0.0 0.0 292140 18:16 0:00 postgres: walwriter
postgres 54175 0.0 0.0 292700 18:16 0:00 postgres: autovacuum launcher
postgres 54176 0.0 0.0 23368 18:16 0:00 postgres: stats collector
postgres 54177 0.0 0.0 292692 18:16 0:00 postgres: logical replication launcher

Logging
Collector

PostgreSQL Processes

PostgreSQL Memory

Shared Buffers 1

WAL Buffers 2

CLOG buffers 3

Maintenance Workmem 4

Workmem 5

… 6

CREATE TABLE admin(id int, name text, dt date);
SELECT relfilenode FROM pg_class WHERE relname LIKE ‘admin’;
relfilenode

16384

$ ls $PGDATA/base/13680/16384
$PGDATA/base/13680/16384

$PGDATA Template dabase

Postgres

16384

/

/dev

/data

13680

0

postgres=# CREATE DATABASE learn_and_apply;

postgres=# \l
List of databases

 Name | Owner |
--------------------+---------+
 learn_and_apply | vagrant |
 postgres | vagrant |
 template0 | vagrant |
 template1 | vagrant |

PostgreSQL Storage: Table Storage

Tunning Parameter
PostgreSQL Tunning

Parameters

Partitioning
Partition your database when

require

PostgreSQL Indexes
Impact of index on Database

Performance

Monitoring
Monitor your database to

identify the bottleneck

Query Analysis
Analyze your queries for

optimal database performance

Database Performance

Memory based configuration
parameters

shared_buffers

PostgreSQL
Memory buffer

work_mem

Buffer for sorting

wal_buffers

Buffer for WAL

maintenance_work_me

mBuffer for
Maintenance

activity

effective_cache_size

PostgreSQL
Cache

Other

postgresql.conf
file contains all
the parameters

1
02

0
3

0
4

0
5

0
6

Tuning Parameters

• PostgreSQL uses its own buffer along with kernel buffered I/O.

• PostgreSQL does not change the information on disk directly then how?

• Writes the data to shared buffer cache.

• The backend process write that these blocks kernel buffer.

postgresql=# SHOW shared_buffers;

shared_buffers

128MB

(1 row)

The proper size for the POSTGRESQL shared buffer cache is the largest useful size that does not adversely affect other activity.
—Bruce Momjian

shared_buffers

• Do you have Transaction? Obviously

• WAL – (Write Ahead LOG) Log your transactions

• Size of WAL files 16MB with 8K Block size (can be changed at compile time)

• PostgreSQL writes WAL into the buffers(wal_buffer) and then these buffers are flushed to disk.

Bigger value for wal_buffer in case of lot of concurrent connection gives better performance.

wal_buffer

effective_cache_size
• Estimation for Planner: The effective_cache_size setting advises the PostgreSQL query planner on the memory available

for caching, helping optimize query execution by influencing the choice between index and sequential scans. It is just a

guideline, not the exact allocated memory or cache size.

• Influences Index Usage: A higher effective_cache_size can make index scans more attractive to the planner by suggesting

ample cache memory is available, thus potentially reducing disk I/O for data access.

• Configurable Based on System Resources: It should be set considering the server's total RAM and other applications'

memory usage, ideally higher than shared_buffers but lower than the total system memory.

• Impact on Performance: Proper configuration of effective_cache_size improves optimizer efficiency and database

performance, especially for large dataset operations that benefit from caching.

• Adjustment Recommendations: The optimal effective_cache_size depends on workload specifics and server setup,

requiring performance monitoring and adjustments based on real-world query execution outcomes.

work_mem
• This configuration is used for complex sorting.

• It allows PostgreSQL to do larger in-memory sorts.

• Each value is per session based, that means if you set that value to 10MB and 10 users issue sort queries then 100MB will

be allocated.

• In case of merge sort, if x number of tables are involved in the sort then x * work_mem will be used.

• It will allocate when required.

• Line in EXPLAIN ANALYZE “Sort Method: external merge Disk: 70208kB”

postgres=# SET work_mem ='2MB';
postgres=# EXPLAIN ANALYZE SELECT * FROM foo ORDER BY id;
 QUERY PLAN
--

 Gather Merge (cost=848382.53..1917901.57 rows=9166666 width=9) (actual time=5646.575..12567.495
rows=11000000 loops=1)
 -> Sort (cost=847382.51..858840.84 rows=4583333 width=9) (actual time=5568.049..7110.789 rows=3666667
loops=3)
Planning Time: 0.055 ms
Execution Time: 13724.353 ms

postgres=# SET work_mem ='1GB';
postgres=# EXPLAIN ANALYZE SELECT * FROM foo ORDER BY id;

QUERY PLAN
--

 Sort (cost=1455965.01..1483465.01 rows=11000000 width=9) (actual time=5346.423..6554.609 rows=11000000
loops=1)
 Sort Key: id
 Sort Method: quicksort Memory: 916136kB
 -> Seq Scan on foo (cost=0.00..169460.00 rows=11000000 width=9) (actual time=0.011..1794.912
rows=11000000 loops=1)
 Planning Time: 0.049 ms
 Execution Time: 7756.950 ms

work_mem

maintenance_work_mem
• maintenance_work_mem is a memory setting used for maintenance tasks.

• The default value is 64MB.

• Setting a large value helps in tasks like

• VACUUM

• RESTORE

• CREATE INDEX

• ADD FOREIGN KEY

• ALTER TABLE

maintenance_work_mem
CHECKPOINT;
SET maintenance_work_mem='10MB';
SHOW maintenance_work_mem;
 maintenance_work_mem

 10MB
(1 row)
postgres=# CREATE INDEX idx_foo ON foo(id);
Time: 12374.931 ms (00:12.375)

CHECKPOINT;
SET maintenance_work_mem='1GB';
SHOW maintenance_work_mem;
 maintenance_work_mem

 1GB
(1 row)
postgres=# CREATE INDEX idx_foo ON foo(id);
Time: 9550.766 ms (00:09.551)

synchronous_commit
Controls the commitment of transactions to disk, balancing between data durability and transaction speed by managing the use

of the Write-Ahead Logging (WAL) system.

• Default Behavior: By default, set to on, ensuring transactions wait for WAL records to be written to disk before completion,

maximizing data safety.

• Performance Impact: Disabling (off) can enhance transaction throughput by reducing disk I/O wait times, beneficial for

workloads where speed is prioritized over immediate durability.

• Durability Trade-off: With synchronous_commit off, there's a risk of losing the last few seconds of transactions in a crash,

trading some data loss risk for improved performance.

• Use Case Flexibility: Administrators can adjust this setting to align with specific application requirements, making it a

versatile tool for performance tuning and risk management in PostgreSQL.

Synchronous commit doesn't introduce the risk of corruption, which is really bad, just some risk of data loss.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

I/O based configuration
parameters

checkpoint_timeout

Time for checkpoint

max_wal_size
checkpoint_completion_tar

get

01
0
3

0
5

Tuning Parameters

Max WAL size Checkpoint completion
target

checkpoint_timeout
The checkpoint_timeout setting in PostgreSQL is a crucial configuration parameter affecting database performance and

reliability. It determines the maximum time interval between automatic WAL checkpoints, directly impacting disk I/O operations

and overall system performance.

● Default Setting and Range: By default, it is set to 5 minutes (5min), with a permissible range from 30 seconds (30s) to 1

hour (1h). This setting can be adjusted to balance between performance and potential recovery time.

● Performance Implications: Longer intervals between checkpoints can improve performance by reducing the frequency of

disk writes, but they may lead to longer recovery times in the event of a crash.

● Impact on Recovery Time: The time needed for recovery after a crash is influenced by the time since the last checkpoint.

More recent checkpoints can significantly reduce recovery time.

● Tuning for Workload: Adjusting checkpoint_timeout requires considering the specific workload, disk performance, and

acceptable recovery times, making it a vital parameter for database administrators to tune for optimal performance and

reliability.

max_wal_size
The max_wal_size setting in PostgreSQL configures the maximum size of WAL (Write-Ahead Logging) files before a checkpoint is

forced, influencing database performance and recovery processes. It determines the maximum amount of disk space that WAL

files can consume between automatic checkpoints, affecting both performance during normal operations and recovery time after

a crash.

● Default and Adjustable Range: The default value varies by PostgreSQL version, but it's set to allow a reasonable amount

of WAL data accumulation, balancing performance with disk usage. Administrators can adjust this setting based on disk

capacity and performance considerations.

● Impact on Disk Space: A larger max_wal_size allows more transactions to be logged before a checkpoint is triggered,

potentially increasing disk space usage but can improve performance by reducing checkpoint frequency.

● Recovery Implications: While a larger WAL size can improve operational efficiency, it may lead to longer recovery times in

the event of a system crash, as more WAL records might need to be processed to bring the database to a consistent state.

● Tuning Considerations: Adjusting max_wal_size is a tuning measure that should take into account the specific needs of

your database workload, available disk space, and acceptable recovery times, aiming for an optimal balance between

performance and reliability.

Heap / Index

B-Tree
PostgreSQL default index

Based on B-Tree

GIST
 Generalized Search Tree

Hash
PostgreSQL Index Method

Based on Hasing

GIN
Generalized Inverted Index

Brin
Block Range Index

PostgreSQL Indexes

Sequential Scan
SELECT * FROM admin WHERE dt <
'2021/04/01';
 id | name | dt
-----+-------------+------------
 3 | James | 2020-01-01
 1 | Alex Johns | 2020-01-02
 7 | Bob William | 2020-01-04
 8 | Charli | 2020-01-01
 6 | David | 2020-08-02
 9 | Benjamin | 1990-01-02

SELECT ctid, * FROM admin WHERE id =
8;

 ctid | id | name
-------+----+------
 (1,0) | 16 | Charli
(1 rows)

Page size 8192
Bytes

pd_special 2 31

1 Alex John 01/02/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

3 James 01/01/2020

7 Bob William 01/04/2020

Tuple 2

Line pointers

Page size 8192
Bytes

pd_special 2 31

8 Charli 01/01/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

6 David 01/08/2020

1 Benjamin 01/02/1990

Tuple 2

Line pointers

B
lo

ck
 0

B
lock 1

SELECT id, name FROM
admin WHERE id = 8;

 id | name
 -----+------
 8 | Charli
(1 rows)

B-Tree Index
9 36 69

9 16 32 36 53 58 69 74 100

54533936 6058191698 34732 75747069 105100

ctid

(3,1)(2,8)(2,2)(2,1) (4,1)(3,2)(1,3)(1,2)0(1,1) (1,8)(1,2) (5,1)(4,8)(4,7)(4,3) (7,2)(5,2)

Page size 8192
Bytes

pd_special 2 31

1 Alex John 01/02/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

3 James 01/01/2020

7 Bob William 01/04/2020

Tuple 2

Line pointers

Page size 8192
Bytes

pd_special 2 31

8 Charli 01/01/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

6 David 01/08/2020

1 Benjamin 01/02/1990

Tuple 2

Line pointers

B
lo

ck
 0

B
lock 1

SELECT id, name FROM admin WHERE name
LIKE ‘Alex Johns’;

 id | name
 -----+------
 16 | Alex Johns
(1 rows)

Alex Johns

James

Bob William

Charli

David

Benjamin

0000

0010

0011

0100

0101

0111

0,0

0,1

0,2

1,0

1,1

1,2

Fh(

x)

C
TID

Hash Index

Page size 8192
Bytes

pd_special 2 31

1 Alex John 01/02/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

3 James 01/01/2020

7 Bob William 01/04/2020

Tuple 2

Line pointers

Page size 8192
Bytes

pd_special 2 31

8 Charli 01/01/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

6 David 01/08/2020

1 Benjamin 01/02/1990

Tuple 2

Line pointers

B
lo

ck
 0

B
lock 1

Horizontal Scalability

02

Horizontal Scalability in PostgreSQL
Horizontal scalability in PostgreSQL involves expanding database capacity by adding more servers or instances, allowing the system to distribute load and data across multiple machines.

• Replication: PostgreSQL supports several replication methods, including streaming replication and logical replication, to

synchronize data across multiple servers, ensuring data consistency and high availability.

• Partitioning: Data partitioning divides large tables into smaller, more manageable pieces across different servers,

improving query performance and data management efficiency.

• Sharding: While not natively supported in PostgreSQL core, sharding can be implemented through extensions or

application-level sharding. This involves distributing data across multiple databases to spread the load.

• Load Balancing: Using load balancers or connection poolers like pgCat, PgBouncer or Pgpool-II can distribute incoming

connections and queries across multiple PostgreSQL servers, optimizing resource usage and response times.

• High Availability Clusters: Setting up PostgreSQL in a high availability (HA) cluster configuration ensures that the

database service remains available even in the event of server failure, through failover mechanisms.

• Scalability Tools and Extensions: Utilizing tools and extensions like Spock, Citus, Postgres-XLand Patroni.

• PostgreSQL supports several replication methods, including logical, streaming, and snapshot, each catering to different

requirements and use cases.

• Streaming Replication: A popular method for real-time replication, streaming replication involves a primary server sending

data changes to one or more standby servers. This method is helpful for high availability and load balancing.

• Logical Replication: Allows selective data replication at the table level, allowing the flexibility to replicate only specific tables

or rows. It's beneficial for upgrading systems with minimal downtime and integrating data across different PostgreSQL

versions.

• Synchronous vs. Asynchronous Replication: In synchronous replication, transactions must be confirmed by both the primary

and standby servers before being committed, ensuring data consistency but potentially affecting performance. Asynchronous

replication, while faster, does not guarantee immediate consistency across servers.

Replication

• Real-time transfer of WAL records from a primary to standby

servers to ensure data consistency and up-to-date replicas.

• Standby servers can run in hot standby mode, allowing them

to handle read-only queries while replicating changes.

• Configurable as either synchronous, for strict data integrity, or

asynchronous, for improved write performance.

• Facilitates automatic failover by promoting a standby to

primary in case of primary server failure.

32

Physical Replication
Physical replication in PostgreSQL is a method for copying and synchronizing data from a primary server to standby servers in real-time.

Logical Replication
Logical replication is method of copying data objects and changes based on replication identity.

33

• Logical replication is method of copying data objects and
changes based on replication identity.

• Provides fine grained control over data replication and security.

• Publisher / Subscriber model - one or more subscriber subscribe
to one or more publisher.

• Copy data in format that can be interpreted by other systems
using logical decoding plugins.

• Publication is set of changes generated from a table or group of
tables.

• Subscription is the downstream end of logical replication.

• Types of Partitioning: PostgreSQL supports two main types of partitioning:

• Range partitioning: where data is divided based on a range of values.

• List partitioning: where data is divided based on a list of specific values.

• Hash Partitioning

• Automatic Partition Management: Starting from PostgreSQL 10, it introduced declarative partitioning, allowing the

database to automatically manage partitions based on the partition key, simplifying the creation and maintenance of

partitioned tables.

• Improved Performance: Partitioning can significantly improve query performance, especially for operations that can be

limited to a few partitions, reducing the amount of data that needs to be scanned.

• Indexing and Constraints: Each partition can be indexed and constrained independently, allowing for more efficient

indexing strategies and constraint enforcement, which further enhances query performance and data integrity.

• Partition Pruning: PostgreSQL's optimizer can perform partition pruning, automatically excluding irrelevant partitions

from query execution plans based on the query conditions, which can drastically reduce the amount of data processed.

Replication
Partitioning in PostgreSQL is a powerful feature for managing large tables by splitting them into smaller, more manageable pieces, called partitions.

Balancing Vertical and Horizontal Scalability

• Balancing vertical scalability allows for adding resources to a single server, optimizing performance for intensive tasks and

ensuring consistent response times.

• Horizontal scalability suits scenarios with high data volume and reads, enabling distributed processing of queries across

multiple servers for improved throughput.

• Strategies include vertical scaling for OLAP workloads, horizontal scaling for read-heavy applications, and hybrid

approaches for a flexible and efficient PostgreSQL deployment.

Best Practices for PostgreSQL Scalability

• Implement data partitioning to distribute data across multiple disks or tables, improving query performance and allowing

for easier management of large datasets.

• Utilize clustering to create a group of interconnected servers that work together, enhancing both performance and fault

tolerance in PostgreSQL environments.

• Employ replication to create redundant copies of the database, ensuring high availability and disaster recovery while also

offloading read-heavy workloads for better scalability.

Future Trends in PostgreSQL Scalability

• Advancements in cloud-native databases like Amazon Aurora and Google Cloud Spanner offer PostgreSQL users scalable

and highly available solutions.

• Containerization technologies such as Docker and Kubernetes streamline deployment, scaling, and management of

PostgreSQL instances in modern IT environments.

• PostgreSQL is evolving by embracing distributed computing methods like sharding and replication to meet the scalability

demands of data-intensive applications.

High Availability

• High availability in PostgreSQL ensures the database is operational and accessible without significant downtime.

• Minimize downtime by implementing redundant systems and automated failover processes for uninterrupted service.

• Ensure data integrity through synchronous replication and high availability features to prevent data loss or corruption.

• Provide seamless failover mechanisms for continuous service by quickly transitioning to standby servers during failures.

High Availability in PostgreSQL

• High availability in PostgreSQL ensures the database is operational and

accessible without significant downtime.

• Replication: Streaming replication is used to create standby servers that are

continuously updated with data from the primary server.

• Failover: Automatic failover process to switch to a standby server in case the

primary server fails.

• Load Balancing: Distribution of queries across multiple servers to improve

performance and distribute the workload.

• Connection Pooling: Management of database connections to optimize

resource usage and improve performance.

• Monitoring and Management: Continuous monitoring of database servers

to detect and respond to issues promptly, often using tools like pgBouncer

and pgpool.

• Backup and Recovery: Regular backups and robust recovery plans to

protect against data loss and ensure quick service restoration.

• Clustering: Grouping multiple servers to work as a single system, providing

redundancy and improving availability.

US West-2

US West-2

US West-2

pgbackrestpgbackrest

pgbackrest

High Availability in PostgreSQL

US West-2

US East-2

US East-1

pgbackrest

pgbackrest

pgbackrest

Logical Replication

Logical Replication

Lo
gi

ca
l R

ep
lic

at
io

n

Patroni

Patroni
Patroni

Questions

Ibrar Ahmed

Code is like clay; in the hands of a skilled
craftsman, it can be molded into something that
stands the test of time. Remember, the art is
not in writing code, but in crafting solutions that
endure. Let's build not just for today, but for the
future.

