
Everything you need to 
know about autovacuum

Bohan Zhang
Cofounder, OtterTune



MVCC in PostgreSQL01.
Autovacuum in PostgreSQL02.
Case Studies03.



MVCC in PostgreSQL01.



What is MVCC01.
When a query updates an existing row in a table, the DBMS 
makes a copy of that row and applies the changes to this new 
version instead of overwriting the original version.

Readers do not block writers, and writers do not block readers.

Increase the DBMS throughput
Reduce the query latency

No free lunch. It introduces additional overhead and issues.

Maintain multiple versions in storage
Find the latest version
Clean up "expired" versions (autovacuum)

https://ottertune.com/


Kung Fu Movies01.

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu 

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang 

CREATE TABLE movies (
  id SERIAL PRIMARY KEY,
  name TEXT,
  year INT,
  director VARCHAR(128)
);
CREATE INDEX idx_name ON movies (name);
CREATE INDEX idx_director ON movies (director);

Secondary Index Secondary IndexPrimary Index

https://ottertune.com/


Multi-Version Storage01.

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu 

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang 

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu 

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang 

◄ Old 

◄ New 1 Shaolin and Wu Tang 1983 Chia-Hui Liu 

UPDATE movies
   SET year = 1983
 WHERE name = 'Shaolin and Wu Tang'

Postgres makes a copy of that row and applies the changes to this new version.

All row versions in a table are stored in the same storage space.

Known as append-only version storage scheme.

https://ottertune.com/


O2N version chain01.

SELECT * FROM movies
 WHERE name = 'Shaolin and Wu Tang'

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu 

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang 

1 Shaolin and Wu Tang 1983 Chia-Hui Liu 

next ver

-

-

-

Oldest-to-Newest
Version Chain

Each tuple version points to its new version, and the head is the oldest tuple version.
Known as Oldest-to-Newest (O2N) version chain
Postgres traverses the version chain to find the latest version.

https://ottertune.com/


UPDATE movies
   SET year = 1983
 WHERE name = 'Shaolin and Wu Tang'

Index01.

Index (movies.name)

Shaolin and Wu Tang (VER1)

Executioners from Shaolin

Five Deadly Venoms

...Shaolin and Wu Tang (VER2)

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu 

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang 

next ver

-

-

Table Page #1

id name year director

1 Shaolin and Wu Tang 1983 Chia-Hui Liu 

next ver

-

-

-

Table Page #2
PostgreSQL adds an entry to every table’s index for each physical version of a 
row.

avoid having to traverse the entire version chain to get the latest version
introduce index maintenance overhead and write amplification

https://ottertune.com/


Autovacuum in 
PostgreSQL

02.



Table Bloat02.

The DBMS has to load dead tuples into memory during 
query execution.

It intermingles dead tuples with live tuples in pages
Page is the smallest unit when fetching data into memory

This causes the DBMS to incur more IOPS and consume 
more memory than necessary during table scans.

Inaccurate optimizer statistics caused by dead tuples 
can lead to poor query plans.

Data Page

a dead tuple

a live tuple

（2 live tuples, 7 dead tuples) 

https://ottertune.com/


Table Bloat02.

Data Page 1 Data Page 2

Data Page 1 Data Page 2

VACUUM

a live tuple a dead tuple

Data Page 1 Data Page 2

A New Data Page

VACUUM FULL

(a). VACUUM (b). VACUUM FULL

VACUUM does not return unused space to OS
VACUUM FULL can return unused space, but it’s time-consuming and resource-intensive

https://ottertune.com/


Vacuum02.

Vacuum: reclaims storage occupied by dead tuples and makes it available for reuse

Vacuum process has 3 main phases:

● Scan Heap: scan a target table to build a list of dead tuples stored in the local 
memory

● Vacuum Index: remove index tuples by referring to the dead tuple list

● Vacuum Heap: remove dead tuples from the heap

https://ottertune.com/


Analyze02.

Analyze: updates statistics used by the planner to determine the most efficient way to 
execute a query

A user had an ETL workload running scripts that bulk-loaded data, and then ran queries 
to aggregate values

Seq Scan on mrt_contributions (cost=0.00..242575.00 rows=1 width=4) 
(actual time=0.006..1955.159 rows=3474601 loops=1)

The optimizer was choosing seq scan in the query plan, because it thought there was 
only one row. After manually running Analyze on the table, it used indexes for hash 
lookup. The job time went from 52 minutes to 34 seconds

Run ANALYZE. Run ANALYZE. Run ANALYZE.

https://ottertune.com/
https://ottertune.com/blog/run-postgresql-analyze-to-fix-a-slowdow-in-db


Autovacuum02.

Automate the execution of VACUUM and ANALYZE commands

Autovacuum checks for tables that have had a large number of dead tuples. If it exceeds 
the vacuum(or analyze) threshold, VACUUM (or ANALYZE) is triggered

vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples

autovacuum_vacuum_threshold (50) autovacuum_vacuum_scale_factor (0.2)

Similar for analyze threshold: autovacuum_analyze_threshold,  autovacuum_analyze_scale_factor 

https://ottertune.com/
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-THRESHOLD
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-SCALE-FACTOR


Autovacuum02.

PostgreSQL automatically executes the vacuum procedure to clean up dead tuples 

https://ottertune.com/


Table-Level Tuning02.

vacuum threshold = base threshold (50) + scale factor (0.2) * number of tuples

If a table has 1000 tuples, vacuum threshold = 50 + 0.2 * 1000 = 250

If a table has 1 billion tuples, vacuum threshold is roughly 200 million tuples

Default settings are not suitable for very large tables, you should set the scale 
factor knob for large tables to a smaller value

https://ottertune.com/


Long Running Transactions02.

More dead tuples
Stale statistics

Long-running 
transactions

vacuums get blocked

more slow queries

Vicious
 Cycle

Autovacuum can be blocked by long-running transactions,
requiring humans to intervene manually.

Identify and resolve long-running transactions promptly. pg_stat_activity 

Identify and optimize prolonged vacuum processes. pg_stat_progress_vacuum 

https://ottertune.com/
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/10/progress-reporting.html


Case Studies03.



Case Study03.

Dash lines show the timestamps when the table was auto-vacuumed
last_autovacuum: Last time this table was vacuumed by the autovacuum daemon (pg_stat_all_tables)  
The last_autovacuum keeps updated, but the tables are not successfully vacuumed

Is autovacuum really vacuuming the table?

https://ottertune.com/
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW


Case Study03.

Even if an autovacuum fails to remove any dead tuple, last_autovacuum will still be updated 
We cannot depend solely on last_autovacuum to know whether dead tuples have been removed

LOG: automatic vacuum of table "postgres.public.test": index scans: 0
pages: 0 removed, 27 remain, 1 skipped due to pins, 0 skipped frozen
tuples: 0 removed, 5856 remain, 3870 are dead but not yet removable, oldest xmin: 963
index scan not needed: 0 pages from table (0.00% of total) had 0 dead item identifiers removed
I/O timings: read: 0.000 ms, write: 0.000 ms
avg read rate: 0.000 MB/s, avg write rate: 0.000 MB/s
buffer usage: 98 hits, 0 misses, 0 dirtied
WAL usage: 1 records, 0 full page images, 188 bytes
system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

Is autovacuum really vacuuming the table?

https://ottertune.com/


Case Study03.

Dash lines show the timestamps when the table was auto-vacuumed (last_autovacuum)
Autovacuum was not triggered on the table

Why autovacuum is not triggered?

https://ottertune.com/


Case Study03.

autovacuum_max_workers:  specifies the maximum number of autovacuum 
processes that may be running at any one time. The default is three.

All autovacuum workers are busy with vacuuming other tables

Why autovacuum is not triggered?

Increase the maximum number of autovacuum workers

Speedup the autovacuum process

it estimates the cost of autovacuum operations; if it surpasses a threshold, it will sleep some time. 
decrease autovacuum_vacuum_cost_delay to make the sleeps shorter
increase autovacuum_vacuum_cost_limit to make the sleeps happen less frequently

https://ottertune.com/


END
bohan@ottertune.com

Try OtterTune for free:
https://ottertune.com/try

https://ottertune.com/try


Case Study03.

● Massive latency spikes 
● Update-heavy workload; Only few insert/delete queries
● For update queries: latency increased from 12ms to 710ms (60x), 

throughput dropped by 25% during the spike

https://ottertune.com/


Case Study03.

● The number of dead tuples increased a lot. Tables were not vacuumed 
successfully

● Consequently, more data were read from memory and disk

https://ottertune.com/


Case Study03.

● The number of HOT (heap-only tuple) updates dropped to 0
● Updates were more expensive during the spike time because HOT optimization 

was not applied

https://ottertune.com/


Case Study03.

Long running queries block autovacuum

Dead tuples accumulate (600x)

Significant increase in blocks read (375x) and non-HOT updates (100%) 

Query latency spikes (90x)

https://ottertune.com/


UPDATE movies
   SET year = 1983
 WHERE name = 'Shaolin and Wu Tang'

HOT (Heap-only Tuple) optimization02.

Index (movies.name)

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu 

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang 

1 Shaolin and Wu Tang 1983 Chia-Hui Liu 

next ver

-

-

-

Shaolin and Wu Tang

Executioners from Shaolin

Five Deadly Venoms

...

Table Page #1

HOT (heap-only tuple) update: 
    an update does not modify any columns referenced by table's indexes
    the new version is stored on the same data page as the old version

The index still points to the old version. Do not need to maintain indexes.
During normal operation, Postgres removes old versions to prune the version chain.

https://ottertune.com/

