

# Kubernetes Killed the High Availability Star

How to stop worrying and embrace Postgres in the cloud

Postgres Conf Seattle 2024

### Who are Tembo?



- Cloud Services <u>cloud.tembo.io</u>
- Trunk (Extensions) <u>pqt.dev</u>
- pg\_vectorize
- pgmq
- pg\_tier
- pg\_timeseries
- And more!



### Who am I?



- Author
- Speaker
- Blogger
- Mentor
- Dev
- High Availability Star

shaun@tembo.io

### PostgreSQL 12 High Availability

Cookbook

Third Edition

Over 100 recipes to design a highly available server with the advanced features of PostgreSQL 12





### Postgres HA is Hard

### How Hard is Postgres High Availability?





### But why is Postgres High Availability Hard?





### The Difficulty of Postgres HA

Postgres is a bag of tools

Some <u>All</u> assembly required

Used by every Postgres HA stack

- pg\_basebackup build replicas
- pg\_rewind "Fix" old Primary nodes
- pg\_ctl start / stop Postgres

Then add orchestration



The Amount of HA Concepts

# High Availability is a content-rich topic

A plethora of theoretical frameworks

Minimum familiarity with:

- Quorum
- Sync / Async Replication
- Split Brain
- Network Partition
- Fencing
- CAP / PACELC



### The Ecosystem of HA Tools

#### HA Management

- repmgr
- pg\_auto\_failover
- Patroni
- Stolon
- EDB Failover Manager (EFM)
- EDB Postgres Distributed (PGD)
- Bucardo

### Pooling Proxies

- PGBouncer
- PgPool-II
- PgCat
- Odyssey
- Supavisor





### And you still have to put it together





### All the Steps



- Configure each server
- Build each replica
- Activate HA stack
- Design access topography
- Account for edge cases
- Cross fingers



### Enough Complaining

What's the Solution?

## Everyone says "use Patroni!"



Create Three VMs

Ok, we need somewhere to run Patroni...

Create some servers!

- AWS / GCS / Azure / OCI / etc.
- Terraform
- Docker compose
- Buy three physical systems



### **Install All Software**

#### Necessary steps:

- Set up repos
- Install software
- Enable required services
- Repeat for all 3 systems

### Everything involved:

- Postgres
- Patroni
- HAProxy
- etcd
- pgBackrest / Barman



### **Configure etcd**

#### etcd.conf

name: pgha1 data-dir: /db/etcd initial-advertise-peer-urls: http://pgha1:2380 listen-peer-urls: http://0.0.0.0:2380 listen-client-urls: http://0.0.0.0:2379 advertise-client-urls: http://pgha1:2379 initial-cluster: "pgha1=http://pgha1:2380,pgha2=http://pgha2:2380,pgha3=http://pgha3:2380"

### Don't forget:

- Do this for each node
- Won't work until etcd is running
- This is the bootstrap phase



### **Configure Patroni**

#### cluster-name.yml

```
scope: stampede
name: pgha1
restapi:
   listen: pgha1:8008
   connect_address: pgha1:8008
etcd:
   host: pgha1:2379
```

```
postgresql:
   listen: pgha1:5432
   connect_address: pgha1:5432
   data dir: /db/pgdata
```

```
bootstrap:
```

```
dcs:
   ttl: 30
   loop_wait: 10
   retry_timeout: 10
   maximum_lag_on_failover: 1048576
```

#### Kubernetes Killed the HA Star

### cluster-name.yml (continued)

```
postgresql:
   use_pg_rewind: true
   use_slots: true
   parameters:
    wal_level: logical
    wal log hints: "on"
```

initdb:

- encoding: UTF8
- data-checksums

pg\_hba:

- host replication rep\_user 10.0.30.1/24 md5
- host all 10.0.30.1/24 md5

#### users:

admin: password: adminpass options: - createrole

- createdb



### **Configure HAProxy**

### haproxy.cfg

```
qlobal
   maxconn 100
defaults
   loq
          qlobal
   mode tcp
   retries 2
   timeout client 30m
   timeout connect 4s
   timeout server 30m
   timeout check 5s
listen postgres
   bind *:5000
   option httpchk
   default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
   server postgres pg1 pgha1:5432 check port 8008
   server postgres pg2 pgha2:5432 check port 8008
    server postgres pg3 pgha3:5432 check port 8008
```

## Don't forget to do that 3 times

💏 tembo

### But That's Not All!



### Still need:

- PgBouncer
- Backup (Barman, pgBackrest)
- Monitoring (Prometheus)
- Log capture (Elasticsearch?)



## Also, set everything up perfectly



### **Just Kidding!**

This works better



### **Kubernetes**



What is Kubernetes?

## YAML GOES IN, CONTAINERS COME OUT

YOU CAN'T EXPLAIN THAT



### Virtually Yours

#### Infrastructure as Code

Docker Compose, but more

Intent-based (declarative) deployment

- Describe required resources
- Define limits
- Choose software
- Configure intended result

Kubernetes continuously provisions





### **Four Important Parts**

### **Control Plane**

- Maintains state
- Coordinates everything

### Worker Nodes

- Host workloads
- Provide resources

#### Storage

- Files, objects, etc.
- Various volume types

### Compute

- CPUs, GPUs, etc.
- Considered transitory



### What Kubernetes Does



Do, or do not:

- Give you what you asked for
- Keep everything operational

Like the force, it's a medium for action



### HA Without HA



### One node cluster!

- Restarts faster than failover
- Quorum is built in
- Connections go here
- Storage is all that matters



### What about Two Nodes?



Kubernetes can't do this by itself

- Which node is the primary?
- How do failovers work?
- What about making replicas?
- And proper backups?
- Where should connections go?



### What is CloudNativePG?





### DBA in a Box

### What do Postgres DBAs do?

What does Kubernetes need?

CloudNativePG is a Kubernetes Operator

- Need extra nodes? It makes more
- Backups and restores? Done
- Connection pool? Ready to go
- Node routing? Easy
- Monitoring and logging? Obviously
- Fencing? Of course!



### How Easy it Can Be

### A sample cluster definition

```
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
```

```
name: cluster-example
```

```
spec:
```

```
instances: 3
```

storage:
 size: 1Gi

#### What it does:

- Creates a 3-node cluster
- Each node has 1GB of storage
- Automatic failover
- Read-write endpoint to primary
- Read-only endpoint to replicas
- Read endpoint to all nodes



### What's the Point?





## Nodes are ephemeral

💏 tembo

## **Declarative Focuses on Results**



## **Only Storage Matters**



### Other Operators

### Zalando Postgres Operator

github.com/zalando/postgres-operator

### **Crunchy Postgres Operator**

github.com/CrunchyData/postgres-operator

### Percona Postgres Operator

github.com/percona/percona-postgresql-operator

### KubeDB

kubedb.com

### StackGres

stackgres.io



### Thanks!

shaun@tembo.io @BonesMoses /in/bonesmoses

tembo.io

### Want to experiment? Use the Tembo free trial!

- Two weeks to test
- \$300 USD credit
- Reverts to Hobby tier instance after trial ends



learn more at tembo.io

# Easily deploy one of our Postgres stacks

- AI / RAG
- Geospatial
- Analytics
- Timeseries



Other ways to extend / focus slides

- To get equivalent of an operator, need to configure:
  - Postgres + replication
  - HA system
  - PgBouncer
  - Barman + HAProxy (round robin)
  - If Patroni, also consensus layer (etcd)
- Must be familiar with all systems
  - Better be good at reading docs
  - Many edge cases
  - Build it yourself, even though it's all 3rd party tools

Other ways to extend / focus slides

- Question Slides
  - Have you ever used a SAN or other external storage?
    - So you agree, ephemeral is best!
  - Etc.
- Series of slides *showing* how difficult it is to build HA cluster
  - But wait, there's more!