
What’s our
Vector, Victor?

Postgres Conf
Seattle 2024

Taking the pain out of AI with pg_vectorize

Whatʼs our Vector, Victor?

● Cloud Services - cloud.tembo.io
● Trunk (Extensions) - pgt.dev
● pg_vectorize
● pgmq
● pg_tier
● pg_timeseries
● And more!

Who are Tembo?

http://cloud.tembo.io
https://pgt.dev/

Postgres Killed the HA Star

● Author
● Speaker
● Blogger
● Mentor
● Dev

shaun@tembo.io

Who am I?

What is AI?

Whatʼs our Vector, Victor?

Not This!

Whatʼs our Vector, Victor?

What it Really is

Whatʼs our Vector, Victor?

LLM

Large Language Model

Whatʼs our Vector, Victor?

RAG

Retrieval Augmented Generation

Whatʼs our Vector, Victor?

Token

Word Chunk

Whatʼs our Vector, Victor?

Embedding

Big-Ass Array

Whatʼs our Vector, Victor?

Embedding

Big-Ass Array

Whatʼs our Vector, Victor?

Embedding

Vector to Token Coordinates

Whatʼs our Vector, Victor?

Transformer

Translates Text into Embeddings

Whatʼs our Vector, Victor?

Coordinates Where?

What Does
pgvector Do?

Whatʼs our Vector, Victor?

Transform Individual Phrases

SELECT vectorize.encode(
input => 'Is Postgres the best database engine?',
model_name => 'sentence-transformers/all-MiniLM-L12-v2'

);

● Easily transform a prompt or search terms into compatible vectors
● Output is compatible with pgvector vector search

Whatʼs our Vector, Victor?

Create and Maintain Embeddings

SELECT vectorize.table(
job_name => 'rt_article_embed',
"table" => 'blog_article',
primary_key => 'article_id',
update_col => 'last_updated',
columns => ARRAY['author', 'title', 'content'],
transformer => 'sentence-transformers/all-MiniLM-L12-v2',
schedule => 'realtime'

);

Embeddings are maintained by pg_cron job, or pgmq live updates

Whatʼs our Vector, Victor?

Important Latency Note!

Writes can spawn embeddings
via queue

Whatʼs our Vector, Victor?

Natural Language Search

SELECT * FROM vectorize.search(
job_name => 'rt_article_embed',

 query => 'Is Postgres the best database engine?',
return_columns => ARRAY['author', 'title', 'content'],
num_results => 5

);

Consider this like Full Text Search, but better

Whatʼs our Vector, Victor?

Bootstrap a RAG Stack

SELECT vectorize.init_rag(
agent_name => 'blog_chat',
table_name => 'blog_article',
"column" => 'article',
unique_record_id => 'article_id',
transformer => 'sentence-transformers/all-MiniLM-L12-v2',
schedule => 'realtime'

);

Realtime embeddings are queued to avoid write latency

Whatʼs our Vector, Victor?

Perform a RAG Request

SELECT vectorize.rag(
agent_name => 'blog_chat',
query => 'Is Postgres the best database?',
chat_model => 'ollama/llama3.1'

) -> 'chat_response';

The result is a JSON object that includes context if we need it

Whatʼs our Vector, Victor?

Works with OpenAI

Just supply your OpenAI token:

ALTER SYSTEM SET vectorize.openai_key TO '<your api key>';

Whatʼs our Vector, Victor?

Or Roll Your Own

Search using Ollama or vLLM instead:

ALTER SYSTEM SET vectorize.openai_service_url
 TO 'https://api.myserver.com/v1';

Use a custom transformer service:

ALTER SYSTEM SET vectorize.embedding_service_url
 TO 'https://api.myserver.com/v1';

Let’s Make a
RAG App

Whatʼs our Vector, Victor?

Anatomy of a RAG App

Whatʼs our Vector, Victor?

User Side

1. Asks a question
2. Pass through transformer
3. Match against stored vectors
4. Question + Results sent to AI
5. Send answer to user

How it Works

Data Side

1. Gather content
2. Pass through transformer
3. Store vector in database

Whatʼs our Vector, Victor?

The Full Monty

To build a RAG app, we need to:

1. Parse and load the content and metadata into Postgres
2. Generate the embeddings
3. Transform user input into an embedding
4. Match results from user search vector
5. Build new prompt from results and user search
6. Send full instructions to OpenAI
7. Return results to user

Whatʼs our Vector, Victor?

From the Perspective of pg_vectorize

Or if we’re using pg_vectorize:

1. Parse and load the content and metadata into Postgres
2. Call vectorize.init_rag(…)
3. Call vectorize.rag(…)

Which would you rather do?

Whatʼs our Vector, Victor?

A Place for Blogs

CREATE TABLE blog_articles (
article_id BIGINT PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
author TEXT,
title TEXT,
content TEXT,
publish_date DATE,
last_updated TIMESTAMPTZ NOT NULL DEFAULT now()

);

Whatʼs our Vector, Victor?

Chunky Style

CREATE TABLE blog_article_chunks (
chunk_id BIGINT PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
article_id BIGINT NOT NULL REFERENCES blog_articles,
chunk TEXT,
last_updated TIMESTAMPTZ NOT NULL DEFAULT now()

);

● Embeddings are usually “fuzzy” (only 384 coordinates)
● We need chunks for sharper context

Whatʼs our Vector, Victor?

More than Meets the Eye

SELECT vectorize.init_rag(
agent_name => 'blog_chat',
table_name => 'blog_article_chunks',
"column" => 'chunk',
unique_record_id => 'chunk_id',
transformer => 'sentence-transformers/all-MiniLM-L12-v2',
schedule => 'realtime'

);

Look familiar? Now we’re indexing chunks rather than full articles.

Whatʼs our Vector, Victor?

Slice and Dice

Here’s a closer look at a chunk splitter in Python:

from langchain_text_splitters import RecursiveCharacterTextSplitter

splitter = RecursiveCharacterTextSplitter(
 separators = ["\n\n", "\n", ' ', '.', '```'],
 chunk_size = 500,
 chunk_overlap = 20,
 length_function = len,
 is_separator_regex = False
)

def chunk_content(content):
 return splitter.split_text(content)

Whatʼs our Vector, Victor?

A Pleasing Result

Now we can finally figure out which database is best:

SELECT vectorize.rag(
agent_name => 'blog_chat',
query => 'Is Postgres the best database engine?',
chat_model => 'ollama/llama3.1'

) -> 'chat_response';

"Four times since 2017, it has won the DB-Engines \"DBMS of the Year\"
award."

Whatʼs our Vector, Victor?

Conclusion!

If you can write queries
You can build AI apps with Postgres

Thanks!

shaun@tembo.io
@BonesMoses
/in/bonesmoses

tembo.io

mailto:shaun@tembo.io
https://twitter.com/bonesmoses
https://www.linkedin.com/in/bonesmoses

Want to experiment?
Use the Tembo free trial!

● Two weeks to test
● $300 USD credit
● Reverts to Hobby tier

instance after trial ends

Easily deploy one of our
Postgres stacks

● AI / RAG
● Geospatial
● Analytics
● Timeseries

Other ways to extend / focus slides

●

