
Postgres Conference: Seattle 2024, November 6th- 7th

Efficient Row Level Security
in Databases
Ezat Karimi , Sr Solutions Architect, Amazon
Shailesh Doshi, Sr Solutions Architect, Amazon

Postgres Conference: Seattle 2024, November 6th- 7th

Agenda

• What is Row level security (RLS)?
• RLS in different database platforms
• RLS Architecture
• RLS & multi-tenancy
• RLS & fine-grained access control (FGAC)
• Pros/Cons of RLS
• RLS Optimization & Best Practices
• RLS & Gen/AI
• Take-aways

Postgres Conference: Seattle 2024, November 6th- 7th

What is RLS?

Postgres Conference: Seattle 2024, November 6th- 7th

What is RLS ?

RLS is used to restrict access to specific rows in a
table based on a user's identity, role, or other factors.

It is used to define fine-grained access control.

Usage:
1. Restrict access to sensitive data
2. Implement row-level access control
3. Support multi-tenancy

Postgres Conference: Seattle 2024, November 6th- 7th

How Does RLS Work?

Select * From Products

Select * From Products
<Predicate>

1

4

3

5

2

User admin defines RLS access
policies on products table

RLS policy is enforced
each time user queries
products table

Postgres Conference: Seattle 2024, November 6th- 7th

RLS - Example

User1

User2

UserId ProductId Name Price

User1 123 Cowboy
hat

100

User1 456 Jeans 34

User2 233 Cowboy
hat

20

User… 798 shirt 200

Policy

Products

WHERE userid = current_user

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Definition & Implementation

Components

v Security Policy
v Row-Level Security Function
v Row-Level Security Predicate
v Table Access
v Row Filtering

Implementation Techniques

v Row-Level Security Functions
v Views
v Stored Procedures
v Triggers
v ABAC
v RBAC

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Policies (PostgreSQL)

-- RLS Policy Definition

• Policy name
• Table name: the table the policy is applied to
• PERMISSIVE|RESTRICTIVE : policy type
• Command (CRUD): ALL, SELECT, DELETE, INSERT, UPDATE. ALL is the default.
• Role: the role the policy applies to; the default is PUBLIC.
• Using_expression: Each row is checked against this expression; if it returns false, it is silently

suppressed and cannot be viewed or modified by the user.
• check_expression: a SQL expression returning a boolean, used when INSERT or UPDATE operations are

performed on the table. Rows are allowed if the policy expression is true, and if it returns false, an error
is returned.

-- Enable RLS
ALTER TABLE products ENABLE ROW LEVEL SECRURITY;

--Define a RLS Policy that allow a sr-manager to do all CRUDs.

CREATE POLICY procurement_products ON products TO managers
USING (‘sr-manager’ = current_user);

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Policy Types (PostgreSQL)
Permissive & Restrictive

• RLS policies are permissive by default.
• Permissive:

• Used to allow access to rows.
• Applied using a boolean “OR”

• Restrictive:
• Used to prevent access to rows.
• Applied using a boolean “AND”

• When RLS is enabled, by default no one can access
the table, unless BYPASSRLS attribute is specified.

• There has to be at least one permissive policy for
anything to work

Define Multiple RLS Policies

Below one policy enables all rows to be viewed by all roles,
and the other only allows each user to modify (CRUD –
SELECT) on its own rows.

CREATE POLICY products_select_policy
 ON products FOR SELECT
 USING (true);

CREATE POLICY products _mod_policy
 ON products
 USING (user = current_user);

Postgres Conference: Seattle 2024, November 6th- 7th

RLS in Different
Database Platforms

Postgres Conference: Seattle 2024, November 6th- 7th

RLS in Different Database Platforms
Feature PostgreSQL SQL Server Oracle OpenSearch

Row/Column Level Security RLS/CLS RL/SCLS RLS/CLS DLS/FLS

RLS implementation Built-in Built-in Built-in Built-in

RLS Policy Enablement
ALTER TABLE <table-
name> ENABLE ROW
LEVEL SECURITY

ALTER DATABASE <db-name>
SET
ENABLE_ROW_LEVEL_SECURITY
ON

DBMS_RLS.ENABLE_POLICY N/A

RLS policies CREATE POLICY
CREATE SECURITY POLICY <pol-
name> ADD FILTER PREDICATE
<pred-name> ON <table-name>

DBMS_RLS.ADD_POLICY(
object_schema => <schema>,
object_name => <table_name>
policy_name => <pol_name>
policy_function
=><func_name>

"dls": "[.. some DLS here ..]",
"allowed_actions":
["indices:data/read/search"]

Performance impact Moderate Moderate Moderate Modetate

Support for multi-tenancy Yes Yes Yes Yes

Integration with IAM Yes Yes (Azure AD) Yes (Oracle IAM) Yes

CLS Implementation

GRANT/REVOKE
<access>(<column-list>)
ON <table-name> TO
<User>

GRANT/DENY <access> ON
TABLE (<Column-list>) TO
<User>

Oracle Advanced
Security’s data redaction
capability

Include or exclude fields in
search query

https://www.oracle.com/security/database-security/advanced-security/
https://www.oracle.com/security/database-security/advanced-security/

Postgres Conference: Seattle 2024, November 6th- 7th

RLS & Fine-Grained Access
Control (FGAC)

Postgres Conference: Seattle 2024, November 6th- 7th

RLS/CLS can be RBAC or
ABAC driven

Role
Mapping Roles

Database

RLS/CLS FGAC

ABAC – Attribute Based Access Control

RBAC – Role Based Access Control

User

Postgres Conference: Seattle 2024, November 6th- 7th

RLS & RBAC
Limit the access based on user role

WHERE <current_role> = ‘ADMIN’
AND salary > 10000

name job salary

John painter 10000

Mary waiter 20000

Betty CEO 500000

Pete writer 90000
RLS & ABAC
Limit the access based on location attribute
of the user

WHERE <location> = ‘London’
AND salary > 10000

RLS & FGAC

Postgres Conference: Seattle 2024, November 6th- 7th

RLS & Multi-Tenancy

Postgres Conference: Seattle 2024, November 6th- 7th

Multi-Tenant Database Isolation Models

Tenant 1

Tenant 2

Silo isolation model
Separate resource per tenant

Tenant 1

Tenant 2

Pool isolation model
Multiple tenants sharing a resource (here a table)

TenantId ProductId Name Price

Tenant1 123 Cowboy
hat

100

Tenant1 456 Jeans 34

Tenant2 233 Cowboy
hat

20

Tenant… 798 shirt 200

Policy

Policy

Policy

Products

Postgres Conference: Seattle 2024, November 6th- 7th

RLS with Pool Isolation Model (PostgreSQL)

-- Enable RLS
ALTER TABLE products ENABLE ROW LEVEL SECURITY;

-- Define RLS policy
CREATE POLICY products_select_policy ON products
USING (tenantid::TEXT = current_user);

-- Tenant1 queries
SELECT * FROM products;

-- RLS enforced
SELECT * FROM products WHERE tenantid = 'tenant1'

Postgres Conference: Seattle 2024, November 6th- 7th

Pros & Cons of RLS

Postgres Conference: Seattle 2024, November 6th- 7th

Benefits of RLS

v Data security by default

v Compliance with regulations

v Reduced risk of data breaches and security
 related mistakes

v Fine-grained access control

v Dynamic access control

v Simplified security management

v Application ORM agnostic

v Enhanced multi-tenancy support

v User and data segregation

v Improved data governance

v Improved data quality

v Improved incident response

v Reduced cost due to simplified and central
security management

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Challenges
v Complexities

v Schema: joins, able inheritance
v Policy: too many rules, too many policies

v User management

v Maintenance

v Auditing and compliance

v Integration with existing systems

v Performance

v Scalability

Postgres Conference: Seattle 2024, November 6th- 7th

When to avoid RLS?
v High-performance database requirements

v Simple security requirements

v Static data

v Legacy systems

v Auditing and logging

v Complex security policies

v Over-engineering

v Database vendor limitations

v Other security mechanisms, such as data encryption is
in place

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Optimization &
Best Practices

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Optimization

v Simplify security policies
v Use efficient predicate functions
v Index security predicate columns
v Use filtered indexes
v Apply RLS last (apply base query filters first)
v Avoid select *; specify the columns to retrieve
v Optimize join orders
v Use RLS with other security features, such FGACs,

data encryption

v Optimize security policy evaluation (e.g., by
caching previous results)

v Use database-specific optimization techniques,
such as table partitioning

v Limit the number of security predicates
v Use materialized views to pre-compute and store

the results of RLS
v Cache security metadata

Postgres Conference: Seattle 2024, November 6th- 7th

RLS Best Practices

v Have a clear understanding of the
business requirements

v Define a clear security model

v Use row-level security policies

v Leverage views and virtual tables

v Optimize database design

v Use indexing and caching

v Do not use RLS for to implement business logic

v Measure the impact of the RLS filters

v Regularly review and update security policies

v Test & validate thoroughly

v Instrument, monitor, audit and remediate

v Be prepared to deal with anomalies

v Keep it simple

Postgres Conference: Seattle 2024, November 6th- 7th

RLS & Gen/AI

Postgres Conference: Seattle 2024, November 6th- 7th

Gen AI & RLS

v Predictive Analytics

v Anomaly Detection

v Access Control Optimization

v Data Classification

v User Behavior Analysis

v RLS Policy Generation

v Incident Response

v Data Loss Prevention

v Compliance

v User Segmentation

v Audit Log Analysis

Postgres Conference: Seattle 2024, November 6th- 7th

Take Aways

Postgres Conference: Seattle 2024, November 6th- 7th

Take Aways
• Factor in scale and performance when designing for RLS

• Use RLS for enforcing access control only

• Keep it simple

• Test and measure the impact

• Follow the best practices

• Avoid RLS when it is not warranted

• Use Gen/AI to improve RLS

Postgres Conference: Seattle 2024, November 6th- 7th

Q/A

Postgres Conference: Seattle 2024, November 6th- 7th

Thank You!

ezatk@amazon.com
doshisk@amazon.com

mailto:ezatk@amazon.com

