Elasticsearch-Quality
Full Text Search in Postgres
with Tantivy

Philippe Noel

Outline

- Current support for search in Postgres
- What is missing and why it needs to be better

- How pg_search is built to solve these limitations

- What pg_search can be used for (hybrid, full-text, faceting, etc.)

Useful Jargon

- Tokenization: splitting text into searchable chunks
- Stemming: reducing words to their root form
- Inverted Index: data structure used for efficient full text search

- Faceting/aggregations: computing metrics/buckets over FTS results

- Elastic DSL: domain-specific query language used by Elastic for FTS

Who am [|?

- Philippe Noel, CEO of ParadeDB
- Originally from Riviére-du-Loup, Québec

- Previously worked on browser security and product at Microsoft Azure

- My Postgres Life interview: https://postgresql.life/post/philippe noel/

What is ParadeDB?

- Elasticsearch alternative built on Postgres
- Packaged as two Postgres extensions

- pg_search: Full text search with BM25

- pg_analytics: Read data lakes (e.g. S3) and table formats (e.g. Iceberg)
- Built in Rust

Why use ParadeDB?

- Users migrate from Elastic to ParadeDB for
- Data reliability (Transaction safe search)
- Data freshness & operational simplicity (No ETL)

- No schema changes or denormalization

- “Just use Postgres”

Who is ParadeDB?

- Ming Ying

- Neil Hansen
- Eric Ridge
- Myself (hi!)

What is Full Text Search (FTS)?

- Query documents by the presence of specific keywords or phrases
- Can be simple or very complex
- Two components: indexing and querying

- Indexing: Preprocessing documents for rapid searching later

- Querying: Searching the index to retrieve some information

Full Text Search vs Vector Search

Also known as similarity search

Is a complement to, not a substitute for, full text search

Matches documents by semantic meaning, not specific keywords

pgvector is a Postgres extension for vector search

Full Text Search in Postgres

Three main tools to do FTS in Postgres:

LIKE operator

ts_vector + GIN index

pg_trgm

LIKE Operator

- column_name LIKE pattern syntax
- e.g. SELECT * FROM users WHERE name LIKE 'John%'
- Limitations:

- Slow performance over large datasets

- Very limited FTS functionality

- No relevance scoring

ts_vector + GIN index

- The “real” implementation of full text search uses the ts_vector data type
- Stores the tokenized, stemmed representation of text
- Results can be ranked with the ts_rank function using TF-IDF

- GIN index constructs an inverted index over ts_vector columns, which improves

query performance

pg_trgm

- Abuilt-in Postgres extension that tokenizes text into tri-grams

- Tri-grams split text into groups of 3 characters. For instance, the tri-grams of “cheese”

”» (1] ” 1]

are “che”, “hee”, “ees”, and “ese”.

- Useful for basic autocomplete

- Would return for search like “chees”

What Postgres Full Text Search is Missing

- BM25 relevance
- More powerful tokenizers and token filters

- Elastic DSL-style, advanced FTS queries (i.e. relevance tuning, dismax, etc.)

- Fast facets and aggregations

What is BM257?

- Term saturation Common words
7 less important

- Factors in document length R \

P(D|R=1 d (l+k

o (D|R=1) d,(1+k) oz
P(D|R=0) d, +k((1-b)& L
More words in Repedtions?eg important tha
common with the different query words

query ¥ good
But more important if

document is relatively
long (wrt. average)

Introducing pg_search

- An extension that brings Elasticsearch-quality FTS to Postgres
- Built in Rust with pgrx
- Uses a FTS library called Tantivy

Ik pg_search

What is Tantivy?

- Rust-based search engine library
- Heavily inspired by Lucene (the search library used by Elasticsearch)
- Support for fast FTS and faceting
- BM25 scoring by default

- Inverted index and columnar storage

How is pg_search Built?

- Four key components

Custom FTS operator @@@
Custom Postgres index
Query builder API

Custom scan

Custom FTS Operator

- @0@ is our FTS operator that resolves a query against a text string, returning true if the
text is a match

- Can be dropped into any Postgres query

- i.e. SELECT * FROM mock_items WHERE id < 10 AND description @@@

'keyboard'’
- Friendly to JOINs, ORDER BY, GROUP BY, etc.

Custom Index

- Running @@@ on every row is slow — this is called a sequential scan
- Our custom index, the BM25 index, constructs an inverted index over the text field
- Works exactly like other built-in Postgres indexes (i.e. B-tree) for index construction,

updates, vacuums, and scans

- One exception: the BM25 index is a covering index

Query Builder API

- Beyond simple text queries, queries can take the form of complex JSON objects
- The right-hand side of @@@ can also accept JSON

- Our query builder functions make it easy to construct this JSON

SELECT * FROM mock_items WHERE id => paradedb.boolean(
should => ARRAY |
paradedb.boost(query => paradedb.parse('description:shoes'), boost => 2.0),
paradedb.term(field => 'description', value => 'running')

Custom Scan

- The Postgres custom scan API allows us to take control of other parts of the query
beyond WHERE ..@@@
- Enables three key use cases:
- Predicate pushdown
- BMZ25 scoring

- Fast facets/aggregations

Predicate Pushdown

- Consider SELECT * FROM mock_items WHERE description @@@ 'keyboard’
AND rating < 5

- Without a custom scan, Postgres will perform separate scans over description and

rating, evenif rating and description are in the BM25 index

BM25 Scoring

- Consider SELECT * FROM mock_items WHERE description @@@ 'keyboard’
- How do we return BM25 scores to the user?

- The custom scan can “project” a score_bm25 column into the result

SELECT %, paradedb.score_bm25(id) AS score_bm25
FROM mock_items WHERE description @@@ 'keyboard'’
ORDER BY score_bm25;

Fast Facets/Aggregations

- Consider SELECT COUNT(id), description FROM mock_items WHERE description
@@@ 'keyboard' LIMIT 10

- If millions of results are found, COUNT(id) will be very slow

- Luckily, Tantivy has the concept of fast fields

Fast Fields

- Fields indexed as “fast” are stored in a column-oriented fashion
- A custom scan can return id to COUNT in batches (i.e. columns)

- Custom scans can also be parallelized

- Result: a column-oriented, vectorized, parallelized faceting engine

Use Cases

- Every software application needs search and analytics
- Companies who want to stick with Postgres or migrate off Elastic
- UPDATE-heavy workloads like e-commerce search

- Faceted search for SaaS applications

- Hybrid search for improving recall

Deployment

- ParadeDB pg_search integrates with:
- AWS RDS/Aurora, GCP CloudSQL, etc.. via logical replication
- CloudNativePG for self-hosted deployments

- Ubicloud.com for a fully-managed solution

Thank You!

paradedb.com

Appendix

Hybrid Search

Hybrid Search for GenAl Applications

- S
|

K7 Vector Search Full Text Search

Query Vector : l l

Fa
| & | Index Vectors ' Index Text ﬁ -1
v Y v l
Retrieve Similar Retrieve by Keyword -
- -
l Exact
Representation

Ranked Results é

Hybrid Results

Similar
Representation

Faceted Search

Categories Flter

Filters

JOIN FEASH

FREE 2.DAY SHIPPING »

Category scope | qum a8 SEPHORA

MAKEUP SKINCARE FRAGRANCE BATH&BODY NAIL HAIR TOOLS & BRUSHES MEN m SALE BRANDS ADVICE | HOW-TO'S g

p— PRODUCTS (86) VIDEOS (4) PHOTOS (106) ARTICLES (31) ADVICE (111)
Value & Gift Sets (2)
Face (1) 9 Product results: “eyelash” Shop DUO»

Eye (8) SOV’?‘—U/\Q

Foacels

[p— sort by relevancy 5 view 60 per page ¥
CLEAR ALL FILTERS
|
BRAND clea fiter \ T } {
Bobbi Brown 1 Al T
Chosungah 22 o II ! - g
{i
Clarins Ji I i 4
i
Duo H |
Estée Lauder V) @ V) 0
buo BUNC BUNC buo
PRICE RANGE Eyelash Adhesive Lash Primer Black Lash Primer Brush On Adhesive
wo $9.00 $20.00 $26.00 $9.00
© [Vo Dalod hekke - e
*
> Pord - ’
CLEAR ALL FILTERS (3
4! ‘ @ '
|
’%
|
BENEFIT COSMETICS BOBBI BROWN BENEFIT COSMETICS BENEFIT COSMETICS
Roller Lash Curling & Lifting Lash Glamour Extreme BADgal Lash Mascara Do the Hoola Beyond Bronze
Mascara Lengthening Mascara $10.00 - $19.00 Kit
$12.00 - $24.00 $28.00 1 more color] $34.00 ($44.00 value)
|2 more colors FHEK N exctusve

Hierarchical Search

SELECT x
part_id

1l
s
3
4
5
)

(5 rows

FROM parts LIMIT
| parent_part_id

description

Chassis Assembly
Engine Block
Transmission System
Suspension System
Cylinder Head

