Complete a Short Survey

Responses for informational purposes only

Proper PostgreSQL Parameters to Prevent Poor Performance

Greg Dostatni DBA @ Command Prompt, Inc. Postgres Conference 2025

Introduction

Goals

- Beginner-friendly Approach
- Trade-offs
- Understanding

Number of PG settings by Major version

Version

Workloads and Data

• Data

- Size of each Row
- \circ Number of Rows
- Complexity of queries
- Workloads
 - \circ OLTP
 - \circ OLAP
 - Data Warehouse
 - $\circ~$ all of the above

Reading of Data

Writing of Data

- Tuple is Created
- Integrity checks
- WAL entry added to WAL buffers,
- WAL record gets sent to disk
- Background process starts updating data files

Parameters

Parameters

- shared_buffers
- work_mem
- max_connections
- effective_cache_size

- Other trade-offs

vacuum and maintenance random_page_cost

shared_buffers

Why:	Increase to improve query performa
------	------------------------------------

	pg_statio_*_tables:
When:	100% * heap_blks_hit / (heap_blks_hi

ed server

it + heap_blks_read)

nce and reduce I/O*

work_mem

Why:	Faster complex queries, allocated wh
------	--------------------------------------

When:	EXPLAIN ANALYZE on common queri
	Check for temp file creation

d data grows.

ies

hen needed.

n*

max_connections

What: How many connections are allowed
--

Why:	Execute more queries at the same ti
------	-------------------------------------

When:	Balance with other parameters. Mon
	are waiting on CPU or locks in pg_sta

Start: Start with 10-20 conr	nections per ava
------------------------------	------------------

me, but at a cost.

nitor for queries that at_activity.

ilable core.

effctive_cache_size

What:	An estimate of kernel cache size

When:	Examine OS Disk and I/O metrics. Go
	large spikes. Watch out for intensive

educe sequential scans

oal is to smooth out

write workload.

AM.

What if?

- 1. What if shared_buffers is large enough to fit nearly entire DB into RAM?
- 2. What if shared_buffers is too small?
- 3. What if work_mem is too small?
- 4. What if connections is 200x number of CPU?
- 5. What if 2 x work_mem x max_connections + shared_buffers is > RAM

(Bonus) *vacuum*

- A set of parameters used to guide maintenance tasks If you don't schedule your maintenance, maintenance will schedule itself. Usually when the system is most busy
- Some maintenance cannot be skipped
- AutoVacuum Tuning and Monitoring right after this talk
- Deep Dive into PostgreSQL Vacuum Internals: Enhancements, Challenges, and Untold Stories - 2025 March 21 09:10 EDT

(Bonus) random_page_cost

- Planner parameter that helps adjust relative cost between sequential and random access to disk.
- random_page_cost=4 was the default meant for HDD
- SSD should use 1.1 or even 1

Other Trade - Offs

Indexes

- Indexes trade disk space and more work during inserts and updates for faster access to data (if they are used)
- Unused indexes are expensive (pg_stat_all_indexes)
- Indexing Strategy Guide March 21 09:10 EDT
- Advanced Indexing Techniques in PostgreSQL: Optimizing Queries for Maximum Performance - 2025 March 21 11:10 EDT

Connection pooling

- Better memory allocation
- Reduces overhead of frequent connection creation and teardown
- Careful about connection lifetime

Caching

- Fastest work is work you can avoid doing
- DB Query is much more expensive vs. cache lookup in Redis or similar
- Great for caching results of queries that change infrequently (or on schedule) and that are looked up many times.

SUMMARY

Recap

- How data moves through PostgreSQL
- Best work is work you can avoid
- https://www.postgresql.org/docs/

Survey Results

Survey Results

What is your go-to response?

nize	Add Read	COMMAND
ries	Replica	PROMPT, INC.

Questions?

COMMAND PROMPT, INC. +1 503 667 4564 www.commandprompt.com/contact-us

EXPERTS IN POSTGRES AND OPEN SOURCE INFRASTRUCTURE

